Спектральная мощность. Спектральная плотность мощности детерминированного сигнала

Взаимная спектральная плотность мощности(взаимный спектр мощности) двух реализаций и стационарных эргодических случайных процессов и определяется как прямое преобразование Фурье над их взаимной ковариационной функцией

или, с учетом соотношения между круговой и циклической частотами ,

Обратное преобразование Фурье связывает взаимные ковариационную функцию и спектральную плотность мощности:

Аналогично (1.32), (1.33) вводится спектральная плотность мощности(спектр мощности) случайного процесса

Функция обладает свойством четности:

Для взаимной спектральной плотности справедливо следующее соотношение:

где – функция, комплексно сопряженная к .

Введенные выше формулы для спектральных плотностей определены как для положительных, так и для отрицательных частот и носят название двухсторонних спектральных плотностей . Они удобны при аналитическом изучении систем и сигналов. На практике же пользуются спектральными плотностями, определенными только для неотрицательных частот и называемыми односторонними (рисунок 1.14):

Рисунок 1.14 – Односторонняя и двусторонняя

спектральные плотности

Выведем выражение, связывающее одностороннюю спектральную плотность стационарного СП с его ковариационной функцией:

Учтем свойство четности для ковариационной функции стационарного СП и функции косинус, свойство нечетности для функции синус, а также симметричность пределов интегрирования. В результате второй интеграл в полученном выше выражении обращается в нуль, а в первом интеграле можно сократить вдвое пределы интегрирования, удвоив при этом коэффициент:

Очевидно, что спектральная плотность мощности случайного процесса является действительной функцией.

Аналогично можно получить обратное соотношение:

Из выражения (1.42) при следует, что

Это означает, что общая площадь под графиком односторонней спектральной плотности равна среднему квадрату случайного процесса. Другими словами, односторонняя спектральная плотность интерпретируется как распределение среднего квадрата процесса по частотам.

Площадь под графиком односторонней плотности, заключенная между двумя произвольными значениями частоты и , равна среднему квадрату процесса в этой полосе частот спектра (рисунок 1.15):

Рисунок 1.15 – Свойство спектральной плотности

Взаимная спектральная плотность мощности является комплексной величиной, поэтому ее можно представить в показательной форме записи через модуль и фазовый угол :


где – модуль;

– фазовый угол;

, – действительная и мнимая части функции соответственно.

Модуль взаимной спектральной плотности входит в важное неравенство

Это неравенство позволяет определить функцию когерентности (квадрат когерентности), которая аналогична квадрату нормированной корреляционной функции:

Второй способ введения спектральных плотностей состоит в непосредственном преобразовании Фурье случайных процессов.

Пусть и – два стационарных эргодических случайных процесса, для которых финитные преобразования Фурье -х реализаций длины определяют в виде

Двусторонняя взаимная спектральная плотность этих случайных процессов вводится с использованием произведения через соотношение

где оператор математического ожидания означает операцию усреднения по индексу .

Расчет двусторонней спектральной плотности случайного процесса осуществляют по соотношению

Аналогично вводятся и односторонние спектральные плотности:

Функции , определенные формулами (1.49), (1.50), идентичны соответствующим функциям, определенным соотношениями (1.32), (1.33) как преобразования Фурье над ковариационными функциями. Это утверждение носит называние теоремы Винера-Хинчина.

Контрольные вопросы

1. Приведите классификацию детерминированных процессов.

2. В чем отличие между полигармоническими и почти периодическими процессами?

3. Сформулируйте определение стационарного случайного процесса.

4. Какой способ усреднения характеристик эргодического случайного процесса предпочтителен – усреднение по ансамблю выборочных функций или усреднение по времени наблюдения одной реализации?

5. Сформулируйте определение плотности распределения вероятности случайного процесса.

6. Запишите выражение, связывающее корреляционную и ковариационную функции стационарного случайного процесса.

7. В каком случае два случайных процесса считаются некоррелированными?

8. Укажите способы расчета среднего квадрата стационарного случайного процесса.

9. Каким преобразованием связаны спектральная плотность и ковариационная функции случайного процесса?

10. В каких пределах изменяются значения функции когерентности двух случайных процессов?

Литература

1. Сергиенко, А.Б. Цифровая обработка сигналов / А.Б. Сергиенко. – М: Питер, 2002.– 604 с.

2. Садовский, Г.А. Теоретические основы информационно-измерительной техники / Г.А. Садовский. – М.: Высшая школа, 2008. – 480 с.

3. Бендат, Д. Применение корреляционного и спектрального анализа / Д. Бендат, А. Пирсол. – М.: Мир, 1983. – 312 с.

4. Бендат, Д. Измерение и анализ случайных процессов / Д. Бендат, А. Пирсол. – М.: Мир, 1974. – 464 с.

При исследовании автоматических систем управления удобно пользоваться еще одной характеристикой стационарного случайного процесса, называемой спектральной плотностью. Во многих случаях, особенно при изучении преобразования стационарных случайных процессов линейными системами управления, спектральная плотность оказывается более удобной характеристикой, чем корреляционная функция. Спектральная плотность случайного процесса определяется как преобразование Фурье корреляционной функцией , т. е.

Если воспользоваться формулой Эйлера то (9.52) можно представить как

Так как нечетная функция то в последнем выражении второй интеграл равен нулю. Учитывая, что четная функция получаем

Так как то из (9.53) следует, что

Таким образом, спектральная плотность является действительной и четной функцией частоты о). Поэтому на графике спектральная плотность всегда симметрична относительно оси ординат.

Если спектральная плотность известна, то по формуле обратного преобразования Фурье можно найти соответствующую ей корреляционную функцию:

Используя (9.55) и (9.38), можно установить важную зависимость между дисперсией и спектральной плотностью случайного процесса:

Термин «спектральная плотность» обязан своим происхождением теории электрических колебаний. Физический смысл спектральной плотности можно пояснить следующим образом.

Пусть - напряжение, приложенное к омическому сопротивлению 1 Ом, тогда средняя мощность рассеиваемая на этом сопротивлении за время равна

Если увеличивать интервал наблюдения до бесконечных пределов и воспользоваться (9.30), (9.38) и (9.55) при то можно формулу для средней мощности записать так:

Равенство (9.57) показывает, что средняя мощность сигнала может быть представлена в виде бесконечной суммы бесконечно малых слагаемых , которая распространяется на все частоты от 0 до

Каждое элементарное слагаемое этой суммы играет роль мощности, соответствующей бесконечно малому участку спектра, заключенному в пределах от до Каждая элементарная мощность - пропорциональна значению функции для данной частоты Следовательно, физический смысл спектральной плотности состоит в том, что она характеризует распределение мощности сигнала по частотному спектру.

Спектральная плотность может быть найдена экспериментально через среднюю величину квадрата амплитуды гармоник реализации случайного процесса. Приборы, применяемые для этой цели и состоящие анализатора спектра и вычислителя среднего значения квадрата амплитуды гармоник, называются спектрометрами. Экспериментально находить спектральную плотность сложнее, чем корреляционную функцию, поэтому на практике чаще всего спектральную плотность вычисляют но известной корреляционной функции с помощью формулы (9.52) или (9.53).

Взаимная спектральная плотность двух стационарных случайных процессов определяется как преобразование Фурье от взаимной корреляционной функции т. е.

По взаимной спектральной плотности можно, применяя к (9.58) обратное преобразование Фурье, найти выражение для взаимной корреляционной функции:

Взаимная спектральная плотность является мерой статистической связи между двумя стационарными случайными процессами: Если процессы некоррелированы и имеют равные нулю средние значения, то взаимная спектральная плотность равна нулю, т. е.

В отличие от спектральной плотности взаимная спектральная плотность не является четной функцией о и представляет собой не вещественную, а комплексную функцию.

рассмотрим некоторые свойства спектральных плотностей

1 Спектральная плотность чистого случайного процесса, или белого шума, постоянна во всем диапазоне частот (см. рис. 9.5, г):

Действительно, подставляя в (9.52) выражение (9.47) для корреляционной функции белого шума, получим

Постоянство спектральной плотности белого шума во всем бесконечном диапазоне частот, полученное в последнем выражении, означает, что энергия белого шума распределена по всему спектру равномерно, а суммарная энергия процесса равна бесконечности. Это указывает на физическую нереализуемость случайного процесса типа белого шума. Белый шум является математической идеализацией реального процесса. В действительности частотный спектр западает на очень высоких частотах (как показано пунктиром на рис. 9.5, г). Если, однако, эти частоты настолько велики, что при рассмотрении какого-либо конкретного устройства они не играют роли (ибо лежат вне полосы частот, пропускаемых этим устройством), то идеализация сигнала в виде белого шума упрощает рассмотрение и поэтому вполне целесообразна.

Происхождение термина «белый шум» объъясняется аналогией такого процесса с белым светом, имеющим одинаковые интенсивности всех компонент, и тем, что случайные процессы типа белого шума впервые были выделены при исследовании тепловых флуктуациоиных шумов в радиотехнических устройствах.

2. Спектральная плотность постоянного сигнала представляет собой -функцию, расположенную в начале координат (см. рис. 9.5, а), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.62), и иандем по (9.55) соответствующую ей корреляционную функцию. Так как

то при получаем

Это (в соответствии со свойством 5 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности, определяемой (9.62), является постоянным сигналом, равным

Тот факт, что спектральная плотность представляет собой -функцию при означает, что вся мощность постоянного сигнала сосредоточена на нулевой частоте, что и следовало ожидать.

3. Спектральная плотность периодического сигнала представляет собой две -функции, расположенные симметрично относительно начала кординат при (см. рис. 9.5, д), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.63), и найдем по (9.55) соответствующую ей корреляционную функцию:

Это (в соответствии со свойством 6 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности определяемой (9.63), является периодическим сиг налом, равным

Тот факт, что спектральная плотность представляет собой две -функции, расположенные при означает, что вся мощность периодического сигнала сосредоточена на двух частотах: Если рассматривать спектральную плотность только в области положительных частот, то получим,

что вся мощность периодического сигнала будет сосредоточена на одной частоте .

4. Спектральная плотность временной функции, разлагаемой в ряд Фурье имеет на основании изложенного выше вид

Этой спектральной плотности соответствует линейчатый спектр (рис. 9.9) с -функциями, расположенными на положительных и отрицательных частотах гармоник. На рис. 9.9 -функции условно изображены так, что их высоты показаны пропорциональными коэффициентам при единичной -функции, т. е. величинам и

Заметим, что спектральная плотность как это следует из (9.64), не содержит, так же как и корреляционная функция, определяемая (9.44), никаких сведений о фазовых сдвигах отдельных гармонических составляющих. и наоборот. Это соответствует физической сущности процесса: чем шире график спектральной плотности, т. е. чем более высокие частоты представлены в спектральной плотности, тем выше степень изменчивости случайного процесса и тем же графики корреляционной функции. Другими словами, связь между видом спектральной плотности и видом функции времени получается обратной по сравнению со связью между корреляционной функцией и видом функции времени. Это особенно ярко проявляется при рассмотрении постоянного сигнала и белого шума. В первом случае корреляционная функция имеет вид горизонтальной прямой, а спектральная плотность имеет вид -функции (см. рис. 9.5, а). Во втором случае (см. рис. 9.5, г) имеет место обратная картина.

6. Спектральная плотность случайного процесса, на кото рой наложены периодические составляющие, содержит непрерывную часть и отдельные -функции, соответствующие частотам периодических составляющих.

Отдельные пики на графике спектральной плотности указывают на то, что случайный процесс смешан со скрытыми периодическими составляющими, которые могут и не обнаруживаться при первом взгляде на отдельные записи процесса. Если, например, на случайный процесс наложен один периодический сигнал с частотой то график; сцектральной плотности имеет вид, показанный на рис. 9.10,

Иногда в рассмотрение вводят нормированную

спектральную плотность являющуюся изображением Фурье нормированной корреляционной функции (9.48):

Нормированная спектральная плотность имеет размерность времени.


Формальное определение

Пусть - сигнал, рассматриваемый на промежутке времени . Тогда энергия сигнала на данном интервале равна:

= = = ,

где - спектральная функция сигнала. При , средняя мощность (дисперсия)

.

Спектральная плотность мощности (функция плотности спектра мощности).

Спектр плотности мощности сигнала сохраняет информацию только об амплитудах спектральных составляющих. Информация о фазе теряется. Поэтому все сигналы с одинаковым спектром амплитуд и различными спектрами фаз имеют одинаковые спектры плотности мощности.

Методы оценки

Оценка СПМ может выполняться методом преобразования Фурье , предполагающего получение спектра в области частот посредством быстрого преобразования Фурье (БПФ). До изобретения алгоритмов БПФ этот метод из-за громоздкости прямого вычисления дискретного преобразования Фурье (ДПФ) практически не использовался. Предпочтение отдавалось другим методам, в частности, методу корреляционной функции (Блэкмена-Тьюки) и периодограммному методу.

См. также

Литература

  • Цифровая обработка сигналов: Справочник. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. - М.: Радио и связь, .
  • Прикладной анализ временных рядов. Основные методы. Отнес Р., Эноксон Л. - М.: Мир, .

Wikimedia Foundation . 2010 .

  • Спектральная серия
  • Спектральные серии водорода

Смотреть что такое "Спектральная плотность мощности" в других словарях:

    Спектральная плотность мощности шума прибора СВЧ - 221. Спектральная плотность мощности шума прибора СВЧ Спектральная плотность мощности шума Noise spectral power density Pш Мощность шума прибора СВЧ в полосе 1 Гц Источник: ГОСТ 23769 79: Приборы электронные и устройства защитные СВЧ. Термины,… …

    Спектральная плотность мощности шумового диода - 140. Спектральная плотность мощности шумового диода G Отношение среднего квадратического значения мощности шумового диода к заданному диапазону частот Источник: ГОСТ 25529 82: Диоды полупроводниковые. Термины, определения и буквенные обозначения… … Словарь-справочник терминов нормативно-технической документации

    спектральная плотность мощности шума - spektrinis triukšmo galios tankis statusas T sritis radioelektronika atitikmenys: angl. noise spectral power density vok. Spektralleistungsdichte des Rauschens, f rus. спектральная плотность мощности шума, f pranc. densité spectrale de puissance… … Radioelektronikos terminų žodynas

    Spektrinis spinduliuotės galios tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Pasirinktosios spektro dalies vienetinio dažnio, bangos ilgio (ar kito su jais susijusio dydžio) intervalo vidutinė spinduliuotės galios vertė.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    спектральная плотность мощности излучения - spektrinis spinduliuotės galios tankis statusas T sritis fizika atitikmenys: angl. radiation power spectral density vok. spektrale Strahlungsleistungsdichte, f rus. спектральная плотность мощности излучения, f pranc. densité spectrale de… … Fizikos terminų žodynas

    относительная спектральная плотность мощности шума прибора СВЧ - Ндп. энергетический спектр шума энергетический спектр флуктуаций спектральная плотность шума ΔPш Отношение спектральной плотности мощности шума прибора СВЧ к выходной мощности в полосе 1 Гц. [ГОСТ 23769 79] Недопустимые, нерекомендуемые… … Справочник технического переводчика

    Относительная спектральная плотность мощности шума прибора СВЧ - 222. Относительная спектральная плотность мощности шума прибора СВЧ Ндп. Энергетический спектр шума Энергетический спектр флуктуации Спектральная плотность шума Relative noise spectral power density ΔPш Отношение спектральной плотности мощности… … Словарь-справочник терминов нормативно-технической документации

    Спектральная плотность - В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье. Если процесс имеет… … Википедия

    Спектральная плотность излучения - характеристика спектра излучения, равная отношению интенсивности (плотности потока) излучения в узком частотном интервале к величине этого интервала. Является применением понятия спектральной плотности мощности к электромагнитному излучению.… … Википедия

    Спектральная плотность энергии (мощности) лазерного излучения - 5. Спектральная плотность энергии (мощности) лазерного излучения* Спектральная плотность энергии (мощности) СПЭ (СПМ) Wλ, Wv, Pλ, Pv Источник … Словарь-справочник терминов нормативно-технической документации

Подразумевая под случайным процессом множество (ансамбль) функций времени, необходимо иметь в виду, что функциям, имеющим различную фор­му, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности, определяемойой (1.47), по всем функциям приводит к нулевому спектру процесса (при М[х (t )]=0 ) из-за случайности и независимости фаз спектральных составляющих в различных реализациях.

Можно, однако, ввести понятие спектральной плотности сред­него квадрата случайной функции, поскольку значение среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случай­ной функцией х(t) подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощ­ность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случай­ного процесса.

Спектральная плотность средней мощности представляет со­бой среднюю мощность, приходящуюся на 1 Гц при заданной частоте ω . Размерность функции W (ω) , являющейся отношением мощности к полосе частот, есть

Спектральную плотность случайного процесса можно найти, если из­вестен механизм образования случайного процесса. Применительно к шу­мам, связанным с атомистической структурой материи и электричества, эта задача будет позже. Здесь же мы ограничимся несколькими определениями общего характера.

Выделив из ансамбля какую-либо реализацию x k (t ) и ограничив ее дли­тельность конечным интервалом Т , можно применить к ней обычное преоб­разование Фурье и найти спектральную плотность X kT (ω). Тогда энергию рассматриваемого отрезка реализации можно вычислить с помощью форму­лы:

(1.152)

Разделив эту энергию на T , получим среднюю мощность k-й реализации на отрезке Т

(1.153)

При увеличении Т энергия Э кТ возрастает, однако отношение стремится к некоторому пределу. Совершив предельный переход , получим:

г
де

представляет собой спектральную плотность средней мощности рассматри­ваемой k-й реализации.

В общем случае величина W k (ω) должна быть усреднена по множеству реализаций. Ограничиваясь в данном случае рассмотрением стационарного и эргодического процесса, можно считать, что найденная усреднением по одной реализации функция W k (ω) характеризует весь процесс в целом. Опуcкая индекс k, получаем окончательное выражение для средней мощности случайного процесса

Для процесса с нулевым средним

(1.156)

Из определения спектральной плотности (1.155) очевидно, что W х (ω) является четной и неотрицательной функцией ω.

1.5.3 Соотношение между спектральной плотностью и ковариационной функцией случайного процесса

С одной стороны, скорость изменения х(t ) во времени определяет шири­ну спектра. С другой стороны, скорость изменения х (t) определяет ход ковариационной функции. Очевидно, что между W х (ω) и К х (τ) имеется тес­ная связь.

Теорема Винера - Хинчина утверждает, что К х (τ) и W x (ω) связаны между собой преобразованиями Фурье:

(1.157)

(1.158)

Для случайных процессов с нулевым средним аналогичные выражения имеют вид:

Из этих выражений вытекает свойство, аналогичное свойствам преобра­зований Фурье, для детерминированных сигналов: чем шире спектр случайного процесса, тем меньше интервал корреляции, и соответственно чем больше интервал корреляции, тем уже спектр процесса (см.рис.1.20).

Рис.1.20. Широкополосный и узкополосный спектры случайного процесса; границы центральной полосы: ±F 1

Большой интерес представляет белый шум, когда спектр равномерен на всех частотах .

Если в выражение 1.158 подставить W x (ω) = W 0 = const, то получим

где δ(τ) - дельта-функция.

Для белого шума с бесконечным и равномерным спектром корреляцион­ная функция равна нулю для всех значений τ, кроме τ = 0 , при котором R x (0) обращается в бесконечность. Подобный шум, имеющий игольчатую структуру с бесконечно тонкими случайными выбросами, иногда называют дельта-коррелированным процессом. Дисперсия белого шума бесконечно велика.

Вопросы для самопроверки

    Назовите основные характеристики случайного сигнала.

    Как связаны математически корреляционная функция и энергетический спектр случайного сигнала.

    Какой случайный процесс называется стационарным.

    Какой случайный процесс называется эргодическим.

    Как определяется огибающая, фаза и частота узкополосного сигнала

    Какой сигнал называется аналитическим.

Наиболее важной характеристикой стационарных случайных процессов является спектральная плотность мощности, описывающая распределение мощности шума по частотному спектру. Рассмотрим стационарный случайный процесс, который может быть представлен беспорядочной последовательностью импульсов напряжения или тока, следующих друг за другом через случайные интервалы времени. Процесс со случайной последовательностью импульсов является непериодическим. Тем не менее, можно говорить о спектре такого процесса, понимая в данном случае под спектром распределение мощности по частотам.

Для описания шумов вводят понятие спектральной плотности мощности (СПМ) шума, называемой также в общем случае спектральной плотностью (СП) шума,которая определяется соотношением:

где P (f ) - усредненная по времени мощность шума в полосе частотf на частоте измеренияf .

Как следует из соотношения (2.10), СП шума имеет размерность Вт/Гц. В общем случае СП является функцией частоты. Зависимость СП шума от частоты называют энергетическим спектром , который несет информацию о динамических характеристиках системы.

Если случайный процесс эргодический, то можно находить энергетический спектр такого процесса по его единственной реализации, что широко используется на практике..

При рассмотрении спектральных характеристик стационарного случайного процесса часто оказывается необходимым пользоваться понятием ширины спектра шума. Площадь под кривой энергетического спектра случайного процесса, отнесенную к СП шума на некоторой характерной частоте f 0 , называютэффективной шириной спектра , которая определяется по формуле:

(2.11)

Эту величину можно трактовать как ширину равномерного энергетического спектра случайного процесса в полосе
, эквивалентного по средней мощности рассматриваемому процессу.

Мощность шума P , заключенная в полосе частотf 1 …f 2 , равна

(2.12)

Если СП шума в полосе частот f 1 ...f 2 постоянна и равнаS 0 , тогда для мощности шума в данной полосе частот имеем:
гдеf =f 2 -f 1 – полоса частот, пропускаемая схемой или измерительным прибором.

Важным случаем стационарного случайного процесса является белый шум, для которого спектральная плотность не зависит от частоты в широком диапазоне частот (теоретически – в бесконечном диапазоне частот). Энергетический спектр белого шума в диапазоне частот -∞ < f < +∞ дается выражением:

= 2S 0 = const, (2.13)

Модель белого шума описывает случайный процесс без памяти (без последействия). Белый шумвозникает в системах с большим числом простых однородных элементов и характеризуется распределением амплитуды флуктуаций по нормальному закону. Свойства белого шума определяются статистикой независимых одиночных событий (например, тепловым движением носителей заряда в проводнике или полупроводнике). Вместе с тем истинный белый шум с бесконечной полосой частот не существует, поскольку он имеет бесконечную мощность.

На рис. 2.3. приведена типичная осциллограмма белого шума (зависимость мгновенных значений напряжения от времени) (рис. 2.3а) и функция распределения вероятности мгновенных величин напряжения e ,которая является нормальным распределением (рис. 2.3б). Заштрихованная площадь под кривой соответствует вероятности появления мгновенных величин напряженияe , превышающих значениеe 1 .

Рис. 2.3. Типичная осциллограмма белого шума (а) и функция распределения плотности вероятности мгновенных величин амплитуды напряжения шума (б).

На практике при оценке величины шума какого-либо элемента или п/п прибора обычно измеряют среднеквадратичное шумовое напряжение в единицах В 2 или среднеквадратичный токв единицах А 2 . При этом СП шума выражают в единицах В 2 /Гц или А 2 /Гц, а спектральные плотности флуктуаций напряженияS u (f ) или токаS I (f ) вычисляются по следующим формулам:

(2.14)

где
и – усредненные по времени шумовое напряжение и ток в полосе частотf соответственно. Черта сверху означает усреднение по времени.

В практических задачах при рассмотрении флуктуаций различных физических величин вводят понятие обобщенной спектральной плотности флуктуаций. При этом СП флуктуаций, например, для сопротивления R выражается в единицах Ом 2 /Гц; флуктуации магнитной индукции измеряются в единицах Тл 2 /Гц, а флуктуации частоты автогенератора – в единицах Гц 2 /Гц = Гц.

При сравнении уровней шума в линейных двухполюсниках одного и того же типа удобно пользоваться относительной спектральной плотностью шума, которая определяется как

=
, (2.15)

где u – падение постоянного напряжения на линейном двухполюснике.

Как видно из выражения (2.15), относительная спектральная плотность шума S (f ) выражается в единицах Гц -1 .