Разница между естественным и искусственным освещением. Источники искусственного освещения, их достоинства и недостатки, область применения Искусственные источники света достоинства и недостатки

Введение

1. Виды искусственного освещения

2 Функциональное назначение искусственного освещения

3 Источники искусственного освещения. Лампы накаливания

3.1.Типы ламп накаливания

3.2. Конструкция лампы накаливания

3.3. Преимущества и недостатки ламп накаливания

4. Газоразрядные лампы. Общая характеристика. Область применения. Виды

4.1. Натриевая газоразрядная лампа

4.2. Люминесцентная лампа

4.3. Ртутная газоразрядная лампа

Список литературы

Введение

Назначение искусственного освещения - создать благоприятные условия видимости, сохранить хорошее самочувствие человека и уменьшить утомляемость глаз. При искусственном освещении все предметы выглядят иначе, чем при дневном свете. Это происходит потому, что изменяется положение, спектральный состав и интенсивность источников излучения.

История искусственного освещения началась тогда, когда человек стал использовать огонь. Костер, факел и лучина стали первыми искусственными источниками света. Затем появились масляные лампы и свечи. В начале XIX века научились выделять газ и очищенные нефтепродукты, появилась керосиновая лампа, которая используется по сегодняшний день.

При зажигании фитиля возникает светящееся пламя. Пламя испускает свет только тогда, когда твердое тело нагревается этим пламенем. Не горение порождает свет, а лишь вещества, доведенные до раскаленного состояния, излучают свет. В пламени свет излучают раскаленные частички сажи. В этом можно убедиться, если поместить стекло над пламенем свечи или керосиновой лампы.

На улицах Москвы и Петербурга осветительные масляные фонари появилось в 30-х годах XVIII века. Затем масло заменили спиртово-скипидарной смесью. Позднее, в качестве горючего вещества, стали использовать керосин и, наконец, светильный газ, который получали искусственным путем. Световая отдача таких источников была очень мала из-за низкой цветовой температуры пламени. Она не превышала 2000К.

По цветовой температуре искусственный свет сильно отличается от дневного, и это различие давно было замечено по изменению цвета предметов при переходе от дневного к вечернему искусственному освещению. В первую очередь было замечено изменение цвета одежды. В ХХ веке с широким распространением электрического освещения изменение цвета при переходе к искусственному освещению уменьшилось, но не исчезло.

Сегодня редкий человек знает о заводах, производивших светильный газ. Газ получали при нагревании каменного угля в ретортах. Реторты - это большие металлические или глиняные полые сосуды, которые наполняли углем и нагревали в печи. Выделившийся газ очищали и собирали в сооружениях для хранения светильного газа - газгольдерах.

Более ста лет назад, в 1838 году, «Общество освещения газом Санкт-Петербурга» построило первый газовый завод. К концу XIX века почти во всех крупных городах России появились газгольдеры. Газом освещали улицы, железнодорожные станции, предприятия, театры и жилые дома. В Киеве инженером А.Е.Струве газовое освещение было устроено в 1872году.

Создание электрогенераторов постоянного тока с приводом от паровой машины позволило широко использовать возможности электричества. В первую очередь изобретатели позаботились об источниках света и обратили внимание на свойства электрической дуги, которую впервые наблюдал Василий Владимирович Петров в 1802 году. Ослепительно яркий свет позволял надеяться, что люди смогут отказаться от свечей, лучины, керосиновой лампы и даже газовых фонарей.

В дуговых светильниках приходилось постоянно пододвигать поставленные «носами» друг к другу электроды - они достаточно быстро выгорали. Сначала их сдвигали вручную, затем появились десятки регуляторов, самым простым из которых был регулятор Аршро. Светильник состоял из неподвижного положительного электрода, закрепленного на кронштейне, и подвижного отрицательного, соединенного с регулятором. Регулятор состоял из катушки и блока с грузом.

При включении светильника через катушку протекал ток, сердечник втягивался в катушку и отводил отрицательный электрод от положительного. Дуга поджигалась автоматически. При уменьшении тока втягивающее усилие катушки уменьшалось и отрицательный электрод поднимался под действием груза. Широкого распространения эта и другие системы не получили из-за низкой надежности.

В 1875 году Павел Николаевич Яблочков предложил надежное и простое решение. Он расположил угольные электроды параллельно, разделив их изолирующим слоем. Изобретение имело колоссальный успех, и «свеча Яблочкова» или «Русский свет» нашел широкое распространение в Европе.

Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света, или для освещения помещения в часы суток, когда естественная освещенность отсутствует.

1. Виды искусственного освещения

Искусственное освещение может быть общим (все производственные помещения освещаются однотипными светильниками, равномерно расположенными над освещаемой поверхностью и снабженными лампами одинаковой мощности) и комбинированным (к общему освещению добавляется местное освещение работах мест светильниками, находящимися у аппарата, станка, приборов и т. д.). Использование только местного освещения недопустимо, так как резкий контраст между ярко освещенными и неосвещенными участками утомляет глаза, замедляет процесс работы и может послужить причиной несчастных случаев аварий.

2. Функциональное назначение искусственного освещения

По функциональному назначению искусственное освещение подразделяется на рабочее , дежурное , аварийное .

Рабочее освещение обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы людей и движения транспорта.

Дежурное освещение включается во вне рабочее время.

Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.

В современных многопролетных одноэтажных зданиях без световых фонарей с одним боковым остеклением в дневное время суток применяют одновременно естественное и искусственное освещение (совмещенное освещение). Важно, чтобы оба вида освещения гармонировали одно с другим. Для искусственного освещения в этом случае целесообразно использовать люминесцентные лампы.

3. Источники искусственного освещения . Лампы накаливания.

В современных осветительных установках, предназначенных для освещения производственных помещений, в качестве источников света применяют лампы накаливания, галогенные и газоразрядные.

Лампа нака ливания -- электрический источник света, светящимся телом которого служит так называемое тело накала (тело накал- проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления тела накала в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX - первой половине XX в. Тело накала изготавливалось из более доступного и простого в обработке материала -- углеродного волокна.

3.1. Типы ламп накаливания

Промышленность выпускает различные типы ламп накаливания:

вакуумные , газонаполненные (наполнитель смесь аргона и азота), биспиральные , с криптоновым наполнением .

3.2. Конструкция лампы накала

Рис.1 Лампа накаливания

Конструкция современной лампы. На схеме: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя.

Конструкции лампы накала весьма разнообразны и зависят от назначения конкретного вида ламп. Однако общими для всех ламп накала являются следующие элементы: тело накала, колба, токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

3.3. Преимущества и недостатки ламп накаливания

Преимущества:

Малая стоимость

Небольшие размеры

Ненужность пускорегулирующей аппаратуры

При включении они зажигаются практически мгновенно

Отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации

Возможность работы как на постоянном токе (любой полярности), так и на переменном

Возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)

Отсутствие мерцания и гудения при работе на переменном токе

Непрерывный спектр излучения

Устойчивость к электромагнитному импульсу

Возможность использования регуляторов яркости

Нормальная работа при низкой температуре окружающей среды

Недостатки:

Низкая световая отдача

Относительно малый срок службы

Резкая зависимость световой отдачи и срока службы от напряжения

Цветовая температура лежит только в пределах 2300--2900 K, что придаёт свету желтоватый оттенок

Лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт -- 145°C, 75 Вт -- 250°C, 100 Вт -- 290°C, 200 Вт -- 330°C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.

Световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности потребляемой от электрической сети, весьма мал и не превышает 4%

4. Газоразрядные лампы . Общая характеристика. Область применения. Виды.

В последнее время принято называть газоразрядные лампы разрядными лампами. Подразделяются на разрядные лампы высокого и низкого давления. Подавляющее большинство разрядных ламп работают в парах ртути. Обладают высокой эффективностью преобразования электрической энергии в световую. Эффективность измеряется отношении люмен/Ватт.

Разрядные источники света (газоразрядные лампы) постепенно вытесняют привычные ранее лампы накаливания, однако недостатками остаются линейчатый спектр излучения, утомляемость от мерцания света, шум пускорегулирующей аппаратуры (ПРА), вредность паров ртути в случае попадания в помещение при разрушении колбы, невозможность мгновенного перезажигания для ламп высокого давления.

В условиях продолжающегося роста цен на энергоносители и удорожания осветительной арматуры, ламп и комплектующих все более насущной становится потребность во внедрении технологий, позволяющих сократить непроизводственные затраты.

Общая характеристика газоразрядных ламп

Срок службы от 3000 часов до 20000.

Эффективность от 40 до 150 лм/Вт.

Цвет излучения: тепло-белый (3000 K) или нейтрально-белый (4200 K)

Цветопередача: хорошая (3000 K: Ra>80) , отличная (4200 K: Ra>90)

Компактные размеры излучающей дуги, позволяют создавать световые пучки высокой интенсивности

Области применения газоразрядных ламп.

Магазины и витрины, офисы и общественные места

Декоративное наружное освещение: освещение зданий и пешеходных зон

Художественное освещение театров, кино и эстрады (профессиональное световое оборудование)

Виды газоразрядных ламп.

Наибольшей эффективностью, на сегодняшний день, обладают лампы разрядные в парах натрия . Кроме этого вида разрядных ламп широко распространены люминесцентные лампы (разрядные лампы низкого давления), металлогалогенные лампы , дуговые ртутные люминесцентные лампы . Меньше распространены лампы в парах ксенон а .

4.1. Натриевая газоразрядная лампа

Натриевая газоразрядная лампа (НЛ) - электрический источник света, светящимся телом которого служит газовый разряд в парах натрия. Поэтому преобладающим в спектре таких ламп является резонансное излучение натрия; лампы дают яркий оранжево-жёлтый свет. Эта специфическая особенность НЛ (монохроматичность излучения) вызывает при освещении ими неудовлетворительное качество цветопередачи. Из-за особенностей спектра НЛ применяются в основном для уличного освещения, утилитарного, архитектурного и декоративного. Применение НЛ для освещения производственных и общественных зданий крайне ограничено и обуславливается, как правило, требованиями эстетического характера.

В зависимости от величины парциального давления паров натрия лампы подразделяют на натриевые лампы низкого давления (НЛНД) и натриевые лампы высокого давления (НЛВД)

Исторически первыми из натриевых ламп были созданы натриевые лампы низкого давления (НЛНД) . В 1930-х гг. этот вид источников света стал широко распространяться в Европе. В СССР велись эксперименты по освоению производства НЛНД, существовали даже модели, выпускавшиеся серийно, однако внедрение их в практику общего освещения прервалось из-за освоения более технологичных ламп ДРЛ, которые, в свою очередь, стали вытесняться НЛВД.

НЛНД отличаются рядом особенностей, существенно затрудняющих как их производство, так и эксплуатацию. Во-первых, пары натрия при высокой температуре дуги весьма агрессивно воздействуют на стекло колбы, разрушая его. Из-за этого горелки НЛНД обычно выполняются из боросиликатных стёкол. Во-вторых, эффективность НЛНД сильно зависит от температуры окружающей среды. Для обеспечения приемлемого температурного режима горелки последняя помещается во внешнюю стеклянную колбу, играющую роль «термоса».

Создание натриевых ламп высокого давления (НЛВД) потребовало иного решения проблемы защиты материала горелки от воздействия паров натрия: была разработана технология изготовления трубчатых горелок из оксида алюминия Al2O3. Такая керамическая горелка из термически и химически устойчивого и хорошо пропускающего свет материала помещается во внешнюю колбу из термостойкого стекла. Полость внешней колбы вакуумируется и тщательно дегазируется. Последнее необходимо для поддержания нормального температурного режима работы горелки и защиты ниобиевых токовых вводов от воздействия атмосферных газов.

Горелка НЛВД наполняется буферным газом, в качестве которого служат газовые смеси различного состава, а также в них дозируется амальгама натрия (сплав с ртутью). Существуют НЛВД «с улучшенными экологическими свойствами» -- безртутные.

4.2. Люминесцентная лампа

Люминесцентная лампа -- газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов.

Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.

Люминесцентные лампы -- наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту. Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет улучшить характеристики люминесцентных ламп -- избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.

4.3. Ртутная газоразрядная лампа

Ртутные г азоразрядные лампы представляют собой электрический источник света, в котором для генерации оптического излучения используется газовый разряд в парах ртути. Для наименования всех видов таких источников света в отечественной светотехнике используется термин "разрядная лампа", включенный в состав Международного светотехнического словаря, утверждённого Международной комиссией по освещению.

В зависимости от давления наполнения различают разрядные лампы низкого давления (РЛНД),разрядные лампы высокого давления (РЛВД) и разрядные лампы сверхвысокого давления (РЛСВД).

К разрядным лампам низкого давления относят ртутные лампы с величиной парциального давления паров ртути в установившемся режиме менее 100 Па. Для разрядных ламп низкого давления эта величина составляет порядка 100 кПа, а для разрядных ламп сверхвысокого давления - 1 МПа и более.

Для общего освещения цехов, улиц, промышленных предприятий и других объектов, не предъявляющих высоких требований к качеству цветопередачи, применяются разрядные лампы высокого давления типа ДРЛ.

ДРЛ (Дуговая Ртутная Люминофорная) - принятое в отечественной светотехнике обозначение РЛВД, в которых для исправления цветности светового потока, направленного на улучшение цветопередачи, используется излучение люминофора, нанесённого на внутреннюю поверхность колбы.

Устройство лампы ДРЛ

Первые лампы ДРЛ изготовлялись двухэлектродными. Для зажигания таких ламп требовался источник высоковольтных импульсов. В качестве него применялось устройство ПУРЛ-220 (Пусковое Устройство Ртутных Ламп на напряжение 220 В). Электроника тех времен не позволяла создать достаточно надёжных зажигающих устройств, а в состав ПУРЛ входил газовый разрядник, имевший срок службы меньший, чем у самой лампы. Поэтому в 1970-х гг. промышленность постепенно прекратила выпуск двухэлектродных ламп. На смену им пришли четырёхэлектродные, не требующие внешних зажигающих устройств.

Для согласования электрических параметров лампы и источника электропитания практически все виды РЛ, имеющие падающую внешнюю вольт-амперную характеристику, нуждаются в использования пускорегулирующего аппарата, в качестве которого в большинстве случаев используется дроссель, включенный последовательно с лампой.

Рис.1 Ртутная лампа высокого давления.

Четырёхэлектродная лампа ДРЛ состоит из внешней стеклянной колбы (1), снабжённой резьбовым цоколем (2). На ножке лампы смонтирована установленная на геометрической оси внешней колбы кварцевая горелка (разрядная трубка) (3), наполненная аргоном с добавкой ртути. Четырёхэлектродные лампы имеют основные электроды (4) и расположенные рядом с ними вспомогательные(зажигающие) электроды (5). Каждый зажигающий электрод соединён с находящимся в противоположном конце разрядной трубки основным электродом через токоограничвающее сопротивление (6). Вспомогательные электроды облегчают зажигание лампы и делают её работу в период пуска более стабильной.

В последнее время ряд зарубежных фирм изготавливает трёхэлектродныелампы ДРЛ, оснащённые только одним зажигающим электродом. Эта конструкция отличается только большей технологичностью в производстве, не имея никаких иных преимуществ перед четырёхэлектродными.

Принцип действия

Горелка лампы изготавливается из тугоплавкого и химически стойкого прозрачного материала (кварцевого стекла или специальной керамики) и наполняется строго дозированными порциями инертных газов. Кроме того, в горелку вводится металлическая ртуть, которая в холодной лампе имеет вид компактного шарика или оседает в виде налёта на стенках колбы и (или) электродах. Светящимся телом РЛВД является столб дугового электрического разряда.

Процесс зажигания лампы, оснащённой зажигающими электродами, выглядит следующим образом. При подаче на лампу питающего напряжения между близко расположенными основным и зажигающим электродом возникает тлеющий разряд, чему способствует малое расстояние между ними, которое существенно меньше расстояния между основными электродами, следовательно, ниже и напряжение пробоя этого промежутка. Возникновение в полости разрядной трубки достаточно большого числа носителей заряда (свободных электронов и положительных ионов) способствует пробою промежутка между основными электродами и зажиганию между ними тлеющего разряда, который практически мгновенно переходит в дуговой.

Стабилизация электрических и световых параметров лампы наступает через 10 - 15 минут после включения. В течение этого времени ток лампы существенно превосходит номинальный и ограничивается только сопротивлением пускорегулирующего аппарата. Продолжительность пускового режима сильно зависит от температуры окружающей среды - чем холоднее, тем дольше будет разгораться лампа.

Электрический разряд в горелке ртутной дуговой лампы создаёт видимое излучение голубого или фиолетового (а не белого как принято считать) цвета, а также мощное ультрафиолетовое излучение. Последнее возбуждает свечение люминофора, нанесённого на внутренней стенке внешней колбы лампы. Красноватое свечение люминофора, смешиваясь с бело-зеленоватым излучением горелки, даёт яркий свет, близкий к белому.

Изменение напряжения питающей сети в большую или меньшую сторону вызывает соответствующее изменение светового потока. Отклонение питающего напряжения на 10 - 15% допустимо и сопровождается изменением светового потока лампы на 25 - 30%. При уменьшении напряжения питания менее 80% номинального лампа может не зажечься, а горящая - погаснуть.

При горении лампа сильно нагревается. Это требует использования в световых приборах с дуговыми ртутными лампами термостойких проводов, предъявляет серьёзные требования к качеству контактов патронов. Поскольку давление в горелке горячей лампы существенно возрастает, увеличивается и напряжение её пробоя. Величина напряжения питающей сети оказывается недостаточной для зажигания горячей лампы. Поэтому перед повторным зажиганием лампа должна остыть. Этот эффект является существенным недостатком дуговых ртутных ламп высокого давления, поскольку даже весьма кратковременный перерыв электропитания гасит их, а для повторного зажигания требуется длительная пауза на остывание.

Традиционные области применения ламп ДРЛ

Освещение открытых территорий, производственных, сельскохозяйственных и складских помещений. Везде, где это связано с необходимостью большой экономии электроэнергии, эти лампы постепенно вытесняются НЛВД (освещение городов, больших строительных площадок, высоких производственных цехов и др.).

Список литературы 1. Безопасность жизнедеятельности. Конспект лекций. Ч. 2/ П.Г. Белов, А.Ф. Козьяков. С.В. Белов и др.; Под ред. С.В. Белова. - М.: ВАСОТ. 1993.2. Безопасность жизнедеятельности/ Н.Г. Занько. Г.А. Корсаков, К. Р. Малаян и др. Под ред. О.Н. Русака. - С.-П.: Изд-во Петербургской лесотехнической академии, 1996.3. Справочная книга по светотехнике / Под ред. Ю.Б. Айзенберга. М.: Энергоатомиздат, 1995.

Искусственное освещение – освещение помещения только источниками искусственного света. Искусственное освещение подразделяется на следующие виды:

- рабочее – освещение, обеспечивающее нормируемые осветительные условия (освещенность, качество освещения) в помещениях и в местах производства работ вне зданий;

Аварийное – разделяется на освещение безопасности и эвакуационнное освещение;

Охранное – устраивают вдоль границ территорий, охраняемых специальным персоналом. Наименьшая освещенность в ночное время 0,5 лк;

Дежурное – освещение в нерабочее время. Область применения, величины освещенности, равномерность и требования к качеству для дежурного освещения не нормируются.

Искусственное освещение может быть двух систем:

· общее освещение – освещение, при котором светильники размещают в верхней зоне помещения равномерно (общее равномерное освещение) или применительно к расположению оборудования (общее локализованное освещение);

· комбинированное освещение – освещение, при котором к общему освещению добавляется местное; местное освещение – освещение, дополнительное к общему, создаваемое светильниками, концентрирующими световой поток непосредственно на рабочих местах. Применение одного местного освещения производственных рабочих мест не допускается.

В качестве искусственных источников света использовались костры, факелы, свечи, керосиновые лампы и т.д. На рубеже 19 и 20 вв. в быт стало прочно входить электрическое освещение, ставшее к настоящему времени основным видом искусственного освещения.

Существуют обязательные нормы искусственного освещения; основной количественной нормируемой характеристикой служит освещенность, которая устанавливается в пределах от 5 до 5000 лк в зависимости от назначения помещений, условий и рода выполняемой людьми работы.



При выборе искусственного освещения для улиц и площадей в качестве нормируемой величины используют среднюю яркость дорожных покрытий. Существующие нормы регламентируют также и качественные характеристики искусственного освещения. К ним относятся: равномерная освещенность рабочей поверхности, отсутствие пульсаций и резких изменений освещенности во времени, ограничение или устранение зрительного дискомфорта или состояние ослепленности, возникающие при наличии в поле зрения больших яркостей, устранение нежелательного блеска освещаемых поверхностей в направлении глаз человека, благоприятный спектральный состав света, благоприятные условия тенеобразования, а также достаточная яркость всех окружающих поверхностей, включая потолки и стены помещений. В соответствии с этим рациональное освещение производственных помещений требует так называемого общего освещение всей площади.

Для искусственного освещения в качестве источников света применяют лампы накаливания и газоразрядные источники света. Экономичные и с большим сроком службы, газоразрядные лампы с успехом (но не полностью) вытесняют лампы накаливания, причем среди них люминесцентные лампы обеспечивают наилучшее качество освещение и могут удовлетворительно имитировать естественное освещение.

С целью рационального использования световой энергии, создаваемой источниками света, а также для защиты их от воздействия окружающей среды и уменьшения слепящего действия применяют соответствующие световые приборы - светильники и прожекторы.

Преимущества:

o свобода в выборе места и характера освещения;

o постоянная сила и качество освещения, возможность изменять направленность светового потока;

Недостатки:

o цветовое восприятие хуже, чем при естественном освещении;

o привязан к электросети или другим источникам энергии;


Горючие вещества. Показатели пожаро-взрывоопасности веществ и материалов.

Особо опасными являются следующие горючие вещества:

1. Легковоспламеняющаяся жидкость (ЛВЖ). Способна самостоятельно гореть после удаления источника зажигания и имеет температуру вспышки не выше 61°С. К взрывоопасным относятся ЛВЖ, у которых температура вспышки не превышает 61°С, а давление паров при температуре 20 °С составляет менее 100 кПа (около 1 атм).

2. Горючая жидкость. Она способна самостоятельно гореть после удаления источника зажигания и имеет температуру вспышки выше 61°С. Горючие жидкости с температурой вспышки 61 "С относятся к пожароопасным, но нагретые в условиях производства до температуры вспышки и выше относятся к взрывоопасным.

3. Взрывоопасная смесь. Смесь с воздухом горючих газов, паров ЛВЖ, пыли или волокон. Нижний концентрационный предел воспламенения смеси составляет не более 65 г/м 3 (при переходе составных смесей во взвешенное состояние они способны взрываться). Концентрация в воздухе горючих газов и паров ЛВЖ принята в процентах к объему воздуха, концентрация пыли и волокон - в граммах на кубический метр к объему воздуха.

Основными причинами пожаров в сельском хозяйстве являются: неосторожное обращение с огнем (26 %), игра детей с огнем (14 %), нарушение правил эксплуатации электрооборудования (14 %), неправильная установка печей и дымоходов (8 %), нарушение правил эксплуатации печей и поражение молнией (8 %), нарушение правил монтажа электроустановок (5 %), нарушение правил эксплуатации технологического оборудования и другие (25 %).

Показатели пожарной опасности строительных материалов и конструкций

Строительные материалы характеризуются следующими пожарно-техническими характеристиками (СНБ 2.02.01-98):

1) горючесть;

2) воспламеняемость;

3) распространение пламени по поверхности;

4) дымообразующая способность;

5) токсичность продуктов.

Горючесть – это способность строительных материалов к горению. По этой характеристике строительные материалы классифицируются как горючие Г и не горючие НГ.

По горючести строительные материалы подразделяются (СНБ 2.02.01-98):

1) Г1 – слабо горючие;

2) Г2 – умеренно горючие;

3) Г3 – нормально горючие;

4) Г4 – сильно горючие.

Воспламеняемость – способность вещества и материалов к воспламенению.

Процесс воспламенения – начало пламенного горения вещества под воздействием источника зажигания и после его удаления.

По воспламеняемости материалы подразделяются:

1) В1 – трудно воспламеняемые;

2) В2 – умеренно воспламеняемые;

3) В3 – легко воспламеняемые

Группы строительных материалов по воспламеняемости определяются по следующим параметрам:

1) температура вспышки;

2) температура самовоспламенения;

3) концентрационные пределы распространения пламени;

4) способность взрываться, гореть при взаимодействии с водой, кислородом воздуха и другими веществами.

По строительным материалам, относящимся к легко воспламеняемым и горючим жидкостям, дополнительно устанавливаются показатели.

Показатели

Токсичность продуктов горения – отношение количества горючего материала к единице объема замкнутого пространства, в котором образующиеся газообразные продукты горения приводят к гибели 50 % подопытных животных.

По токсичности продуктов горения установлены следующие группы:

1) Т1 – мало опасные;

2) Т2 – умеренно опасные;

3) Т3 – высоко опасные;

4) Т4 – чрезвычайно опасные.

Дымообразующая способность – характеризует оптическую плотность дыма, образующегося при пламенном горении. По этому показателю установлены следующие группы:

1) Д1 – с малой дымообразующей способностью;

2) Д2 – с умеренной дымообразующей способностью;

3) Д3 – с высокой дымообразующей способностью.

Такая характеристика как распространение пламени по поверхности определяется критической поверхностной плотностью теплового потока (величиной теплового потока, при которой прекращается распространение пламени) и подразделяется на четыре группы:

1) РП1 – не распространяющиеся;

2) РП2 – слабо распространяющиеся;

3) РП3 – умеренно распространяющиеся;

4) РП4 – сильно распространяющиеся.

Следует отметить, что строительные конструкции классифицируются по следующим показателям:

1) предел огнестойкости;

2) класс пожарной опасности.

Предел огнестойкости строительных конструкций характеризуется нормируемыми по времени признаками предельных состояний по потере несущей способности (R ), целостности (Е), теплоизолирующей способности (I ). Предельные состояния строительных конструкций определяются по ГОСТ 30247.

По пожарной опасности строительные конструкции подразделяют на:

1) КО – не пожароопасные;

2) К1 – мало пожароопасные;

3) К2 – умеренно пожароопасные;

4) К3 – пожароопасные

Класс пожарной опасности строительных конструкций определяется по таблице 2.2.

Таблица– Классификация строительных конструкций по пожарной опасности

Искусственное освещение может быть общим (все производственные помещения освещаются однотипными светильниками, равномерно расположенными над освещаемой поверхностью и снабженными лампами одинаковой мощности) и комбинированным (к общему освещению добавляется местное освещение работах мест светильниками, находящимися у аппарата, станка, приборов и т.д.). Использование только местного освещения недопустимо, так как резкий контраст между ярко освещенными и неосвещенными участками утомляет глаза, замедляет процесс работы и может послужить причиной несчастных случаев аварий.

По функциональному назначению искусственное освещение подразделяется на рабочее , дежурное , аварийное .

Рабочее освещение обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы людей и движения транспорта.

Дежурное освещение включается во вне рабочее время.

Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.

В современных многопролетных одноэтажных зданиях без световых фонарей с одним боковым остеклением в дневное время суток применяют одновременно естественное и искусственное освещение (совмещенное освещение). Важно, чтобы оба вида освещения гармонировали одно с другим. Осветительные приборы составляют самую многочисленную группу электроприборов в каждом доме. Источники света являются важным элементом быта.

Источники искусственного освещения. Их достоинства и недостатки

Все современные лампы можно классифицировать по трем основным признакам: это тип цоколя, способ получения света и напряжение, от которого они работают. Начнем с самого главного - способа получения светового потока. Именно от него в полной мере зависит способность лампы потреблять определенное количество электрической энергии. Рассмотрим подробнее некоторые особенности этих ламп освещения.

Лампы накаливания

Лампы накаливания (рис. 1) относятся к классу тепловых источников света. Несмотря на внедрение более технологичных видов ламп, остаются одними из самых массовых и дешевых источников света, особенно в бытовом секторе.

Действие этих ламп основано на нагревании спирали проходящим через нее током до температуры 3000 градусов. Колбы ламп мощностью от 40 Вт и более наполнены инертными газами - аргоном или криптоном. Бытовые лампы бывают мощностью 25 - 150 Ватт. Лампы мощностью до 60 Ватт с уменьшенным цоколем называются миньонами. Проверить исправность лампы можно тестером, спираль должна иметь определенное сопротивление. У светильника с лампой накаливания возможно всего две неисправности: 1. Перегорелалампа 2. Отсутствует контакт в электропроводке, в результате чего на цоколь не подается напряжение.

Достоинства : Просты по конструкции, надежны, не имеют дополнительных устройств при включении, практически не зависят от температуры окружающей среды, мгновенно зажигаются.

Недостатки : Имеют не очень большой срок службы, около 1000 часов.

Лампы люминесцентные

Люминесцентные лампы (рис. 2) относятся к газоразрядным лампам низкого давления. Могут быть различной формы: прямые, трубчатые, фигурные и компактные (КЛЛ). Диаметр трубки не связан с мощностью лампы, которая может достигать до 200 Вт. Трубчатые лампы имеют двухштырьковые типы цоколей в зависимости от расстояния между штырьками: G-13 (расстояние - 13 мм) для ламп диаметром 40 мм и 26 мм и G-5 (расстояние - 5 мм) для ламп диаметром 16 мм.

Компактная люминисцентная лампа (КЛЛ) (рис. 3) - люминесцентная лампа, которая имеет изогнутую форму колбы, что позволяет разместить ее в светильнике небольших размеров. Такие лампы могут иметь встроенный электронный дроссель (ЭПРА), могут быть разной формы и разной длины. Применяются либо в специальных типах светильников либо для замены ламп накаливания в обычных типах светильников (лампы мощностью до 20Вт, которые вкручиваются в резьбовой патрон или через адаптер).

Люминесцентные лампы требуют работы специального устройства - пускорегулирующего аппарата (дросселя). Большинство зарубежных ламп могут работать как с обычными (с дросселем), так и с электронными пускорегулирующими аппаратами (ЭПРА). Но некоторые из них предназначены только для одного вида ПРА.

Светильники с ЭПРА имеют следующие преимущества: лампа не мерцает, лучше зажигается, не шумит (шум от дросселя), легче по весу, экономит электроэнергию (потери мощности в ЭПРА намного ниже, чем в ПРА).

Меняя виды люминофора, можно изменять цветовые характеристики ламп. Буквы, входящие в наименование люминисцентных ламп, означают:

Л - люминесцентная, Б - белая, ТБ - тепло-белая, Д - дневная, Ц - с улучшенной цветопередачей. Цифры 18, 20, 36, 40, 65, 80 обозначают номинальную мощность в ваттах. Например, ЛДЦ-18 - лампа люминесцентная, дневная, с улучшенной цветопередачей, мощностью 18 Вт.

Светильник с люминесцентными лампами работает следующим образом (рис. 4) - трубчатая лампа заполнена аргоном и парами ртути. Стартер необходим для пуска лампы, нужно на короткое время прогреть электроды, ток, текущий через дроссель и стартер значительно увеличивается, нагревает биметаллическую пластину стартера, электроды лампы прогреваются, контакт стартера размыкается, ток в цепи уменьшается, на дросселе образуется кратковременное большое напряжение, его накопленной энергии хватает на то, чтобы пробить газ в колбе лампы. Далее ток идет через дроссель и лампу, при этом 110 Вольт падает на дросселе, а 110 Вольт на лампе. Пары ртути с помощью люминофора создают свечение, воспринимаемое глазом человека. Дроссель почти не потребляет энергию, энергию, которую он берет при намагничивании, он почти полностью возвращает при размагничивании, при этом бесполезно загружаются провода, чтобы разгрузить сеть используется конденсатор С. Обмен энергией происходит не между сетью и дросселем, а между дросселем и конденсатором. Наличие конденсатора понижает КПД лампы, без него КПД 50-60%, с ним - 95%. Конденсатор, который подключен параллельно стартеру, используется для защиты от радиопомех.

Неисправность люминесцентного светильника может заключаться в нарушении электрического контакта в схеме светильника или в выходе из строя одного из элементов светильника. Надежность контактов проверяется визуальным осмотром и проверкой тестером.

Работоспособность лампы или пускорегулирующей аппаратуры проверяется путем последовательной замены всех элементов на заведомо исправные.

Типовые неисправности светильников с люминесцентными лампами

Неисправность

Способ устранения

Срабатывает защита при включении светильника

1. Пробой компенсирующего конденсатора (от радиопомех) на входе светильника.

2. Замыкание в цепи за автоматом.

1. Заменить конденсатор.

2. Проверить напряжение на контактах патронов и стартера.

3. Заменить лампу на исправную.

4. Проверить целостность спиралей лампы.

Лампа не зажигается.

На патроне светильника со стороны питающей сети нет напряжения, низкое напряжение сети.

Проверить индикатором или тестером наличие и значение напряжения питания.

Лампа не зажигается, на концах лампы нет свечения.

1. Плохой контакт между штырьками лампы и контактами патрона или между штырьками стартера и контактами держателя стартера.

2. Неисправность лампы, обрыв или перегорание спиралей.

3. Неисправность стартера - стартер не замыкает цепь накала электродов лампы.

4. Неисправность в электрической схеме светильника.

5. Неисправен дроссель.

1. Пошевелить в стороны лампу и стартер.

2. Установить заведомо исправную лампу.

3. Если отсутствует свечение в стартере, заменить стартер.

4. Проверить все соединения в электрической схеме.

5. Если обрыва проводов, нарушения контактных соединений и ошибок в электрической схеме не обнаружено, то, неисправен дроссель.

Лампа не зажигается, концы лампы светятся.

Неисправен стартер.

Заменить стартер.

Лампа мигает, но не зажигается, имеется свечение на одном конце.

1. Ошибки в электрической схеме.

2. Замыкание в электрической цепи или патроне, которое может закорачивать лампу.

3. Замыкание выводов электродов лампы.

1. Лампы вынуть и вставить, поменять местами концы. Если светится ранее несветящийся электрод, то лампа исправна.

2. Если свечение отсутствует на том же конце лампы, проверить, есть ли замыкание в патроне со стороны несветящегося электрода.

3. Если замыкание не обнаружено, проверить схему соединений.

4. Заменить лампу

Лампа не мигает и не зажигается, свечение имеется на обоих концах электродов.

1. Ошибка в электрической схеме.

2. Неисправность стартера (пробой конденсатора для подавления радиопомех или залипание контактов стартера).

Заменить стартер.

Лампа мигает и не зажигается

1. Неисправен стартер.

2. Ошибки в электрической схеме.

3. Низкое напряжение сети.

1. Проверить тестером напряжение сети.

2. Заменить стартер.

3. Заменить лампу.

При включении лампы на ее концах наблюдается оранжевое свечение, через некоторое время свечение исчезает и лампа не зажигается.

Неисправна лампа, в лампу попал воздух

Необходимо заменить лампу

Лампа попеременно зажигается и гаснет

Неисправность лампы

1. Необходимо заменить лампу.

2. Если мигание продолжается, то заменить стартер.

При включении лампы перегорают спирали ее электродов.

1. Неисправность дросселя (нарушена изоляция или межвитковое замыкание в обмотке).

2. В электрической схеме имеется замыкание на корпус.

1. Проверить электрическую схему.

2. Проверить изоляцию проводов.

3. Проверить в электрической схеме замыкание на корпус светильника

Лампа зажигается, но через несколько часов работы появляется почернение ее концов.

1. Замыкание на корпус светильника в электрической схеме.

2. Неисправность дросселя.

1. Проверить замыкание на корпус, проверить изоляцию проводки.

2. Тестером проверить величину пускового и рабочего тока, если эти величины превосходят нормальные значения, заменить дроссель.

Лампа зажигается, при ее горении начинается вращение разрядного шнура и проявляются перемещающиеся спиральные и змеевидные полосы

1. Неисправна лампа.

2. Сильные колебания напряжения сети.

3. Плохой контакт в соединениях.

4. Лампа охватывает магнитные силовые линии рассеяния дросселя.

1. Необходимо заменить лампу.

2. Проверить напряжение сети.

3. Проверить контактные соединения.

4. Заменить дроссель.

Достоинства : По сравнению с лампами накаливания экономичнее и долговечнее, обладают хорошей светопередачей. Срок службы до 10000 часов у импортных ламп и до 5000-8000 часов у отечественных. Удобно использовать там, где лампа включена много часов.

Недостатки : При температуре ниже 5 градусов тяжело зажигаются и могут гореть более тускло.

Газоразрядные лампы ДРЛ

Лампы ДРЛ (дуговые ртутные с люминофором (Рис. 5,6), это разрядные лампы высокого давления. Благодаря дополнительным электродам и резисторам, размещенным в колбе, лампа не нуждается в зажигающем устройстве, включается в сеть с индуктивным ПРА и зажигается непосредственно от напряжения 220 Вольт, конденсатор необходим для уменьшения силы тока.

После включения лампы она зажигается, световой поток, создаваемый лампой, постепенно увеличивается, процесс разгорания длится 7 - 10 минут. При исчезновении напряжения лампа гаснет. Горячую лампу зажечь невозможно, необходимо ее полное остывание, после выключения ее можно повторно зажечь лишь через 10-15 минут. Бывают мощностью от 80 до 250 Ватт.

Ремонт светильников с лампами ДРЛ заключается в выявлении вышедшего из строя элемента и замене его на заведомо исправный.

Достоинства : значительно экономичнее ламп накаливания, нечувствительны к изменениям температуры, поэтому их удобно использовать при освещении на улице, срок службы до 15000 часов.

Недостатки : низкая цветопередача, пульсация светового потока, чувствительность к колебаниям напряжения в сети.

Галогенные лампы

Галогенные лампы накаливания (рис. 7) относятся к классу тепловых источников света, световое излучение которых является следствием нагрева спирали лампы проходящим через него током. Наполнена газовой смесью, в состав которой входят галогены (обычно йод или бром). Это придает свету яркость, насыщенность, и их можно применять в точечных источниках света.

Лучше применять лампы известных фирм - галогенные лампы излучают ультрафиолетовые лучи, что вредно для глаз. В лампах известных фирм есть специальное, не пропускающее ультрафиолет покрытие.

При возникновении неисправности измерить напряжение на цоколе светильника, если напряжение в норме - заменить лампу. Если напряжения на цоколе светильника нет - неисправность в трансформаторе или в контактной части электротехнической арматуры.

Достоинства : Срок службы 1500-2000 часов, обладают стабильностью светового потока в течении всего срока службы, меньшие размеры колбы по сравнению с лампами накаливания. При одинаковой с лампой накаливания мощности световая отдача в 1,5-2 раза больше.

Недостатки : Нежелательны изменения напряжения сети, при снижении напряжения уменьшается температура спирали и снижается срок службы лампы.

Энергосберегающие лампы

Энергосберегающие лампы (рис. 8) предназначены для эксплуатации в осветительных приборах жилых, офисных, коммерческих, административных и промышленных помещений, в декоративных осветительных установках.

Их можно использовать в любом светильнике в качестве заменителя ламп накаливания. Энергосберегающие лампы представляют собой разновидность газоразрядных ламп низкого давления, а именно компактных люминесцентных ламп (КЛЛ).

Мощность энергосберегающих ламп примерно в пять раз меньше, чем у ламп накаливания. Поэтому рекомендуется выбирать мощность энергосберегающих ламп исходя из соотношения 1:5 к лампам накаливания.

Основными параметрами таких ламп являются цветовая температура, размер цоколя и коэффициент цветопередачи. Цветовая температура определяет цвет свечения энергосберегающей лампы. Выражается по шкале Кельвина. Чем ниже температура, тем цвет свечения ближе к красному.

Энергосберегающие лампы имеют различные цвета свечения - белый теплый свет, холодный белый, дневной свет. Рекомендуется выбирать нужный цвет, исходя из интерьера квартиры или дома и особенностей зрения людей, которые там находятся. Холодный белый свет имеет обозначение 6400К. Такое освещение ярко-белое и лучше подходит для офисных помещений. Естественный белый свет имеет обозначение обозначением 4200К и близок к естественому освещению. Такой цвет может подойти для детской комнаты и гостинной. Белый теплый свет - немного желтоватый и имеет обозначение 2700К. Он наиболее близок к лампе накаливания, лучше подходит для отдыха, может использоваться на кухне и в спальне. Большинство людей для квартиры выбирает теплый цвет.

Если в энергосберегающей лампе появляются мерцания, то это говорит о неисправности устройства, лампа либо слабо вкручена, либо неисправна и подлежит замене.

Достоинства : Служат в 8 раз дольше, чем обычные лампы накаливания, на 80% меньше потребляют электроэнергии, дают в 5 раз больше света при равном потреблении энергии, могут работать в постоянном режиме в местах, где требуется освещение на протяжении всех суток, менее чувствительны к тряске и вибрациям, слабо нагреваются, не гудят и не мерцают.

Недостатки : Медленно разогреваются (около двух минут), нельзя использовать в открытых уличных светильниках (не работают при температуре ниже 15 градусов С), нельзя использовать с регуляторами освещенности (диммерами) и датчиками движения.

Светодиодные лампы.

Светодиодные лампы (рис. 9) являются еще одним источником света нового поколения.

В качестве источника света в таких лампах служат светодиоды. Светодиод излучает свет при прохождении через него электрического тока.

Светодиодные лампы основного освещения состоят из: рассеивателя, светодиода или набора светодиодов, корпуса, радиатора охлаждения, блока питания, цоколя. Большое значение имеет радиатор охлаждения, так как светодиоды и блок питания греются. Если радиатор маленький или некачественно сделан, то такие лампы быстрее выходят из строя (обычно выходит из строя блок питания). Блок питания преобразует переменное напряжение 220В в постоянный ток для питания светодиодов.

Выпускаются под патроны GU5.3, GU10, E14, E27. Предлагаются лампы мягкого теплого света (2600-3500К), нейтрального белого (3700-4200К) и холодного белого (5500-6500K). Есть светодиодные лампы с управляемой яркостью (с помощью диммера для ламп накаливания), но они стоят дороже.

Достоинства : Экономичность (затраты на электроэнергию по сравнению с лампами накаливания меньше в 10 раз), большой срок службы (20000 часов и выше), при производстве используютя безопасные компоненты (не содержат ртути), устойчивы к скачкам напряжения, не требуют разогрева (в отличие от энергосберегающих ламп).

Недостатки : Довольно высокая цена, светодиоды постепенно теряют яркость, не могут работать при температуре выше 100 градусов С (жарочные шкафы и т.д.).

Качественное и рациональное освещение (свет) – одно из главных условий нормальной трудовой и обычной деятельности человека.

Хорошее освещение – это высокая продуктивность, внимательность, сосредоточенность, хорошее самочувствие и здоровье человека в целом. Плохое освещение – это пониженная продуктивность ввиду усталости глаз, более высокая опасность появления неправильных и ошибочных действий, опасность возрастания производственного и бытового травматизма, а также это постепенное ухудшение зрительного процесса. Низкая степень освещённости может стать причиной профессионального заболевания органов зрения.

Уровень освещения, как на производстве, так и в быту, должен быть, как минимум, достаточным, а как максимум, соответствовать всем техническим нормам и правилам.

Освещение бывает двух основных видов: естественное и искусственное.

Естественное

Естественное освещение часто называют дневным. Источником данного вида освещения является обычный солнечный свет. Освещение может исходить как непосредственно от солнца, так и от ясного дневного неба в виде рассеянных по нему солнечных лучей.

Использование естественного освещения не предполагает практически никаких материальных затрат, поэтому оно экономически выгодно. Дневной свет является естественным для глаз, в отличие от света искусственного.

Естественное освещение производственных помещений и жилых зданий осуществляется чаще всего через обычные окна, расположенные на боковых стенах. Также данный вид освещения реализуется через световые проёмы, находящиеся сверху. По данным параметрам естественное освещение делят на боковое освещение, верхнее и совмещённое.

Ввиду того, что боковое освещение несколько неравномерно само по себе, совмещённое освещение встречается не так уж редко. В настоящее время существует много технических решений для выполнения совмещённого освещения.

Для того чтобы максимально использовать возможности дневного света, проектируются световые проёмы, обладающие достаточно большой высотой и шириной.

Несмотря на все свои огромные преимущества, у естественного освещения есть также и собственные недостатки. Одним из них является неравномерность и непостоянность освещённости. Во-первых, источник света Солнце постоянно движется в дневном небе, поэтому освещённость меняется в течение всего светового дня.

Во-вторых, уровень освещённости зависит от различных факторов. Это, например, состояние погоды. Она может быть ясной или пасмурной, может идти дождь или снег. С самого утра может быть туман. Также естественная освещённость может зависеть от времени суток (утро, день, вечер, ночь), а также от времени года.

Освещение искусственного типа используется в тёмное время суток или в случае недостаточности обычного дневного света. Источниками искусственного освещения являются лампы накаливания, люминесцентные лампы, газоразрядные лампы, светодиодные лампы и т.д.

Данный вид освещения можно условно разделить на общее освещение, местное освещение и комбинированное освещение.

Общее применяется для полного освещения какого-либо помещения. Общее освещение в свою очередь подразделяется на равномерное (одинаковое освещение в любом месте) и локализованное (освещённость в определённом месте).

Местное освещение обеспечивает освещённость только на рабочих поверхностях. На производстве использовать только местное освещение не разрешается ввиду того, что оно не освещает (или почти не освещает) рядом находящиеся места.

Комбинированное освещение включает в себя два выше перечисленных вида освещения.

По назначению искусственное освещение бывает рабочим, аварийным, охранным и дежурным.

Рабочее освещение является стандартной и самой распространённой разновидностью искусственного освещения. Оно используется в местах производства работ (в помещениях, в цехах, внутри зданий, снаружи).

Аварийное освещение предусматривается в тех местах, где отключение рабочего освещения может привести к различным аварийным ситуациям на производстве, таким как нарушение технологического процесса, нарушение нормального обслуживания оборудования со стороны персонала предприятия. Также данное освещение используется и для эвакуационных целей.

Аварийное освещение обязательно должно иметь либо независимое электроснабжение, либо электрическое питание автономного типа.

Охранное освещение обычно используется по периметру территории, которая находится под охраной. Оно включается в тёмное время суток и обеспечивает необходимую степень освещённости для полноценной охраны территории.

Дежурное освещение используется в тех случаях, когда необходимо обеспечить минимальную искусственную освещённость в каком-либо месте.

Световые эффекты

Лучше всего цвета передаются при естественном освещении, поэтому одной из главных задач искусственного освещения является максимально естественная цветопередача. У разных источников искусственного света цветопередача абсолютно разная.

У некоторых люминесцентных ламп происходит мерцание. Частота мерцания равна частоте рабочего питающего напряжения. Такое мерцание человек вполне может не заметить, однако оно способно создавать определённые иллюзии. Это может стать опасным фактором во время рабочего процесса на производстве.

Важной задачей электрического питания для освещения является стабильность и качество электроснабжения. Нестабильность питания может привести не только к пульсации осветительной техники и последующему его выходу из строя, но и к нарушению функционирования органов зрения человека.

Измерение освещённости

Освещённость измеряется в специальных единицах, называемых люксами. Для того чтобы произвести замер степени или уровня освещённости, используют приборы люксметры. Благодаря люксметрам становится возможным произвести необходимые замеры и сравнения показаний с техническими нормами и требованиями правил.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Контрольная работа

на тему: "Искусственное освещение"

1. Влияние освещения на зрение, безопасн ость и производительность труда

Свет - одно из естественных условий жизнедеятельности человека, которое играет важную роль в сохранении здоровья и высокой работоспособности. Под его влиянием активизируются все обменные процессы, улучшается психоэмоциональное состояние, регулируются биологические ритмы, острота зрения.

Правильное освещение в помещении является одним из важных факторов, действующих на самочувствие, работоспособность, восстановление человека. Недостаточное освещение часто увеличивает риск травматизма на производстве, потому что работники плохо ориентируются в пространстве из-за слепящих источников света, теней, бликов и так далее. Только при правильно спроектированном и выполненном освещении может осуществляться нормальная производственная и рабочая деятельность. Качество зрительной информации при неудовлетворительном освещении страдает. Недостаточное освещение часто увеличивает риск травматизма на производстве, потому что работники плохо ориентируются в пространстве из-за слепящих источников света, теней, бликов и так далее. Свет стимулирует работоспособность. Освещение достаточно, если человек длительное время без напряжения работает, не испытывая при этом утомления глаз. При пользовании люминесцентными лампами, зрительное утомление наступает позже, чем при обычных лампах накаливания, а производительность труда повышается. Наиболее комфортные условия могут обеспечиваться естественным солнечным светом. Основные задачи производственного освещения: поддерживать на рабочем месте необходимую освещенность, улучшать условия зрительной работы, снижать утомление, повышать безопасность и производительность труда, качество выпускаемой продукции и снижение профессиональных заболеваний.

Освещенность регламентируется нормами в зависимости от характера зрительной работы, системы и вида освещения, фона, контраста объекта с фоном. Организуя производственное освещение, выбирают нужный спектральный состав светового потока, для обеспечения правильной цветопередачи, или усиления цветовых контрастов. Естественное освещение дает лучший спектральный состав. Чтобы цвет передавался правильно, используют монохроматический свет. Он усиливает одни цвета и ослабляет другие. искусственный освещение производительность нормирование

Естественное освещение зависит от географической широты, высоты солнцестояния, облачности и прозрачности атмосферы. Нормы естественного освещения определяются в соответствии с назначением здания и отдельных помещений. Улучшать освещенность помещений можно окраской стен и потолков в светлые тона, очисткой оконных стекол. В помещении может использоваться естественное освещение, искусственное и смешенное.

Источники искусственного света - электрические лампы. Искусственное освещение выделяют двух видов: общее, распределение света равномерно по всему помещению, и комбинированное, состоящее из ламп одновременно общего и местного освещения. Только при местном освещении работать не рекомендуется, при переводе взгляда с ярко освещенной поверхности на темные окружающие предметы, создается дополнительная нагрузка на глаза. При выполнении точной зрительной работы лучше применять комбинированное освещение.

В поле зрения работающего не должно быть резких теней. Их наличие искажает размеры и формы объектов различения, повышает утомляемость, снижает производительность труда. Появляющиеся движущиеся тени опасны, т.к. могут привести к травмам. Тени надо смягчать, например, используя светильники со светорассеивающими молочными стеклами, при естественном освещении, применяя солнцезащитные устройства (жалюзи, козырьки и др.).

Для улучшения видимости объектов в поле зрения работающего не должно быть прямой и отраженной блескости, вызывающей ухудшение видимости объектов. Блескость уменьшают, снижая яркость источника света, делая правильный выбор защитного угла светильника, увеличивая высоту подвеса светильников, правильно направляя световой поток на рабочую поверхность, изменяя угол наклона рабочей поверхности. По возможности, блестящие поверхности надо заменить матовыми.

Колебания освещенности на рабочем месте, которые могут вызываться резким изменением напряжения в сети, обусловливают переадаптацию глаза, приводящую к сильному утомлению. Постоянство освещенности во времени достигается стабилизацией плавающего напряжения, жестким креплением светильников, применением специальных схем включения газоразрядных ламп.

Нормы освещенности установлены СНиП 23-05-95. У светильников местного освещения имеются отражатели из непрозрачного материала с защитным углом не менее 30°, а при расположении светильников не выше уровня глаз работающего - не менее 10°. Освещение должно позволять четко различать деления на отсчетных и контрольно-измерительных устройствах и приборах, а также поверхности обрабатываемых деталей. Настольную лампу устанавливают так, чтобы свет от нее падал спереди с левой стороны, чтобы тень от руки не заслоняла работу. Мощность ламп в светильниках общего освещения определяется из расчета 10-15 Вт на 1 м 3 площади помещения. Общее освещение устраивают с помощью люминесцентных ламп, а для местного используют лампы накаливания.

2. Достоинства и недостатки искусственных источников света

Сравнивать искусственные источники света друг с другом можно по следующим параметрам: номинальному напряжению питания U (В), электрической мощности лампы Р (Вт), световому потоку, излучаемому лампой Ф (лм), максимальной силе света J(кд); световой отдаче

Еv = Ф/Р (лм/Вт),

т.е. отношению светового потока лампы к ее электрической мощности; срок службы лампы и спектральный состав света.

Широкое применение в промышленности находят лампы накаливания. Их преимущества: удобство в эксплуатации, простота в изготовлении, низкая инерционность при включении, отсутствие дополнительных пусковых устройств, надежность работы при колебаниях напряжения и при различных метеорологических условиях окружающей среды. К недостаткам ламп накаливания относят: низкую световую отдачу (для ламп общего назначения Еv = 7...20 лм/Вт), сравнительно малый срок службы (до 2,5 тыс. ч), преобладание желтых и красных лучей в спектре, что не много отличает их спектральный состав от солнечного света.

Галогеновые лампы - лампы накаливания с йодным циклом получили распространение. Их преимущества перед лампами накаливания увеличение световой отдачи (до 40 лм/Вт), за счет повышения температуры накала нити. Так же увеличивается срок службы лампы до 3 тыс. ч., благодаря тому, что пары вольфрама, испаряющиеся с нити накаливания, соединяются с йодом и вновь оседают на вольфрамовую спираль, препятствуя распылению вольфрамовой нити. Галогеновые лампы имеют более близкий к естественному спектр излучения.

Основным преимуществом газоразрядных ламп перед лампами накаливания является большая световая отдача 40...110 лм/Вт. Они имеют значительно большой срок службы, до 8...12 тыс. ч. От газоразрядных ламп можно получить световой поток любого желаемого спектра, подбирая соответствующим образом инертные газы, пары металлов, люминоформ. По спектральному составу видимого света различают лампы дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛЛД), холодного белого (ЛХБ), теплого белого (ЛТБ) и белого цвета (ЛБ). Основной недостаток газоразрядных ламп заключается в пульсации светового потока, что может вызвать стробоскопического эффект, заключающийся в искажении зрительного восприятия. Недостатком газоразрядных ламп является длительный период разгорания, необходимость применения специальных пусковых приспособлений, облегчающих зажигание ламп, зависимость работоспособности от температуры окружающей среды. Газоразрядные лампы могут создавать радиопомехи, исключение которых требует специальных устройств.

Достоинства светодиодных ламп заключается в следующем: световая отдача высокая, большой срок эксплуатации до 50 тысяч часов, могут иметь различные спектральные характеристики без применения светофильтров, безопасность использования, малые размеры, высокая прочность, отсутствие ртутных паров, низкое ультрафиолетовое и инфракрасное излучение, небольшое тепловыделение, устойчивость к вандализму. К недостаткам этих ламп относится: высокая цена, использование преобразователей напряжения, высокий коэффициент пульсаций светового потока без сглаживающего конденсатора, спектр немного отличается от солнечного.

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света. В зависимости от конструктивного исполнения различают светильники открытые, защищенные, закрытые, пылепроницаемые, влагозащитные, взрывозащищенные, взрывобезопасные.

3. Принцип нормир ования искусственного освещения

Цель нормирования освещения состоит в том, чтобы создать такие его нормы, которые бы обеспечивали необходимый уровень видимости и наибольшую работоспособность зрения при длительной работе и минимальном его утомлении. Гигиеническое нормирование уровней освещенности устанавливается в соответствии с физиологическими особенностями зрительных функций людей и отражено в определенных санитарных правилах и нормах.

Для искусственного освещения нормируемым параметром является освещенность. Количественные и качественные характеристики освещения (показатель дискомфорта, показатель освещенности, коэффициент пульсации освещенности) регламентируются СНиП 25-05-95 (II-4-79). Нормируется один из количественных показателей - наименьшая освещенность рабочей поверхности, обеспечивающая выполнение зрительной работы, остальные учитываются косвенно. Значения освещенности устанавливаются в зависимости от точности зрительной работы, контраста объекта с фоном, яркости фона, системы освещения и типа используемых ламп, а также сложностью и продолжительностью зрительной работы, санитарными требованиями, требованиями безопасности работы и передвижения. Критерием точности зрительной работы является размер объекта различения. Чем меньше угловые размеры объектов, контраст объекта с фоном и коэффициент отражения освещаемой поверхности, тем выше должен быть уровень нормируемой освещенности. Разряд зрительной работы делится на четыре подразряда в зависимости от сочетаний контраста и фона. Всего различают восемь разрядов и четыре подразряда в зависимости от степени зрительного напряжения. Для системы комбинированного освещения значения норм освещенности выше, чем для общего. Нормируется степень равномерности освещения источниками общего и местного освещения при комбинированном освещении для обеспечения более полной зрительной адаптации в наименьший отрезок времени. Нормами предусмотрены защитные меры для ослабления слепящего действия открытых источников света и освещенных поверхностей с чрезмерной яркостью. Устранение и ограничение слепящего действия источников света и отражающих поверхностей предусмотрены регламентацией минимально допустимых высот подвеса светильников (не ниже 2,8 м от пола) и предельно допустимых яркостей светящихся поверхностей светильников (от 2000 до 5000 нт). Ослабление отраженной блескости достигается использованием матовой окраски поверхностей и оборудования, устранением из поля зрения глянцевых и полированных предметов. При нормировании устанавливаются минимальные гигиенические величины освещенности. Снижение их снижает работоспособность и вызывает повышенное утомление зрения.

Таким образом, нормирование освещения сводится к следующему: достаточность уровня освещенности или яркости фона; равномерность распределения яркости в поле зрения; ограничение слепящего действия от источников света; устранение резких и глубоких теней; приближение спектра излучения искусственных источников к спектру дневного света.

4. Методы расчета искусственного освещени я

Расчет искусственного освещения заключается в определении типа и количества светильников, которые необходимы для создания заданной освещенности. Искусственную освещенность рассчитать можно тремя методами. Метод коэффициента использования светового потока применяют для расчета общего равномерного освещения горизонтальной рабочей поверхности. Он позволяет рассчитывать среднюю освещенность горизонтальной поверхности с учетом всех падающих на нее прямых и отраженных потоков. Световой поток Ф находится по формуле:

где Е - минимальная нормированная освещенность, лк, принимаемая по СНиП 32-05-95 или отраслевым нормам; S -освещаемая площадь, м 2 ; К 3 - коэффициент запаса; Z - коэффициент неравномерности освещения; N - количество рядов светильников; -коэффициент затенения; - в долях единицы. Коэффициент использования светового потока зависит от высоты подвеса светильников, от коэффициентов отражения стен и потолка, от индекса помещения i , определяемого по формуле:

где S - площадь помещения, м 2 ; h - расчетная высота подвеса (расстояние от светильника до рабочей поверхности), м; А и В - ширина и длина помещения, м.

Точечный метод расчета освещения позволяет определить освещенность в любой точке поверхности освещаемого помещения независимо от размещения светильников. Он обычно используется как поверочный метод для расчета освещенности в определенных точках поверхности. Освещенность какой-либо точки А горизонтальной поверхности выражается формулой:

где I A - сила света (кд), заданная для условной лампы со световым потоком 1000лм; б - угол между вертикальной плоскостью и направлением светового потока на освещаемую точку; h св - высота подвеса светильника, м. Относительная освещенность:

Это величина численно соответствует освещенности точки А, расположенной на том же луче, но на плоскости, по отношению к которой высота установки светильника равна 1 м. Так как освещенность данным методом рассчитывается для ламп со световым потоком 1000 лм, заменяют обозначение освещенности Е на е, записывая формулу:

где е - условная освещенность. Относительная освещенность - это функция угла б, но её удобнее изображать кривыми в функции:

При расчете освещенности для лампы с произвольным световым потоком Ф пользуются формулой:

Для каждого типа светильника строят пространственные изолюксы, которые показывают условную горизонтальную освещенность е, являющейся функцией параметров d, h.

Метод удельной мощности является производным от метода коэффициента использования. Он проще, но менее точный. Этот метод часто применяют на стадии проектирования при ориентировочных расчетах общего равномерного освещения. Этим методом проводят расчет общего равномерного освещения, особенно для помещений с большой площадью. Этот метод основан на анализе большого количества светотехнических расчетов, выполненных по методу коэффициента использования светового потока. Удельная мощность W y - это отношение мощности W источников света всех осветительных установок освещаемого помещения к освещаемой площади S п, т.е.

Значение удельной мощности зависит от основных факторов таких как тип светильников, размещение их в помещении, мощности и типа ламп, характеристики освещаемого помещения.

5. Задача: рассчитать общее равномерное освещение производственного помещения. Расчет выполнить методом коэффициента использования светового потока для ламп накаливания и люминесцентных ла мп. Сравнить результаты расчета

Решение . Разряд зрительных работ IIIб, поэтому норма освещенности для общего освещения Е = 200 лк для ламп накаливания и Е = 300 лк для люминесцентных ламп (по СНиП 23.05-95, таблица 7.13 ).

Расчет освещения с использованием ламп накаливания. Выбираем источник света. Принимаем лампы накаливания.

Выбираем тип светильника. Принимаем по таблице 7.8 светильник СП 21-200-0054 с кривой силы света типа Г.Свес светильника по условию 0,3 м.

Принимаем высоту рабочей поверхности в соответствии ОСТ 32.120-98 (таблица 7.14 ) h Р =1,0 м.

H Р = H - h С - h Р,

где H -высота помещения, h С - высота подвески светильника от потолка, h Р -высота рабочей поверхности, м

H Р = 3,5-0,3-1,0 = 2,2 м. Определяем оптимальное расстояние между светильниками L по формуле:

где л - коэффициент для определения расстояния между светильниками. л = 1 (по таблице 7.2 )

Учитывая шаг колонн l = 6 м, будем располагать светильники между фермами.

Определяем число светильников по длине помещения n А по формуле:

где А - длина помещения, м.

n А =16/2,2 =7,27?7.

Принимаем n А =7 шт.

Определяем число светильников по ширине помещения n В по формуле:

В - ширина помещения, м.

n В =10/2,2=4,5?4.

Принимаем n В =4 шт.

Определяем общее число светильников по формуле:

S = 16 10=160 м 2 .

Для светильников с КСС типа М при с n =0,7, с c =0,5, с р =0,3 индексе помещения ц=2,8 с учетом интерполяции принимаем з=0,98. Определяем необходимый световой поток одной лампы F по формуле:

F = E H S K Z / N з,

F = 200 160 1,4 1,1/28 0,98 = 1795 лм. Выбираем лампу Г 220-230-150 (таблица 7.3 ) мощностью 150 Вт со световым потоком F л =2090 лм. Определяем фактическое значение освещенности E факт по формуле:

E факт =E н F л / F,

E факт =200 2090/1795 = 233 лк.

Определяем отклонение фактической освещенности от нормативного значения Д по формуле:

Д = 100(E факт - E Н)/E Н,

Д = 100(233-200)/200 = 16,5 %.

Фактическое значение освещенности не превышает нормированного значения более чем на 20 %, что удовлетворяет требованиям СНиП 23-05-95.

Определяем электрическую мощность ламп:

P = 28 150 = 4200 Вт.

Расчет освещения с использованием люминесцентных ламп. Выбираем источник света - люминесцентные лампы. Принимаем наиболее экономичные лампы белого света типа ЛБ.

Выбираем тип светильника. Принимаем подвесные светильники типа ЛВ 003-2х 40-001 с двумя лампами ЛБ 40 с КСС типа Д.

По условию свес светильника h С =0,3 м.

Принимаем высоту рабочей поверхности в соответствии ОСТ 32.120-98 (табл. 7.14 ) h Р =1,0 м.

Рис. Схема размещения светильников на разрезе помещения

Определяем расчетную высоту подвеса светильника Н Р по формуле:

H Р =Н - h С - h Р,

H Р =3,5-0,3-1,0 =2,2 м.

Определяем оптимальное расстояние между рядами люминесцентных светильников L по формуле:

где л - коэффициент для определения расстояния между светильниками. По таблице 7.12 для светильников с КСС типа Д принимаем л=1,4.

L=1,4*2,2 =3,08 м.

Определяем число рядов светильников N по формуле:

N=10/3,08=3,25?3.

Принимаем N=3.

Определяем площадь помещения по формуле:

S = 16 10=160м 2

Выбираем коэффициент запаса по таблице 7.16 K=1,4, учитывая, что он лежит в пределах (1,2…1,5).

Принимаем коэффициент неравномерной освещенности (см. п. 7.7) Z=1,1.

Определяем индекс помещения ц по формуле:

ц = S/H p (A+B)ц =160/2,2(16+10)=2,8.

Выбираем коэффициент использования светового потока з по таблице 7.17 .

Для светильников с КСС типа Д при с n =0,7, с c = 0,5, с р =0,3 индекс помещения ц =2,8 с учетом интерполяции принимаем з = 0,79.

Определяем необходимый световой поток одного ряда светильников по формуле:

F = E H S K Z / N з,

F = 300 160 1,4 1,1/3 0,79 = 31189,87 лм. Определяем число светильников в одном ряду по формуле:

Световой поток лампы ЛБ 40-1 по таблице 7.2 F л =3200 лм.

Световой поток одного светильника с двумя лампами ЛБ 40-1.

F св = 2 F л = 2 3200 = 6400 лм.

n=31189/6400=4,87 ? 5.

Принимаем n=5 шт.

Определяем фактическое значение освещенности E факт по формуле:

E факт = E Н F факт /F,

Фактическое значение светового потока одного ряда светильников:

F факт = n F св = 5 6400 = 32000 лм.

E факт = 300 32000/31189,87 = 307,79 лк.

Рис. Схема размещения светильников в помещении

Определяем отклонение фактической освещенности от нормированного значения Д по формуле:

Д=100(E факт - E Н)/E Н, Д= 100(307,79-300)/300 = 2,59 %.

Фактическое значение освещенности больше нормированного значения на 2,59 %, что удовлетворяет требованиям СНиП 23-05-95.

Всего светильников 15 (3 ряда по 5 светильников), в каждом по 2 лампы, значит, ламп 30.

P = 30 40 = 1200 Вт.

Литература

1. Безопасность жизнедеятельности в условиях производства. Расчёты: учеб пособие /Т.А. Бойко, Е.Б. Воробьёв, Ж.Б. Ворожбитова [и др.]; под. общ. ред. Е.Б. Воробьёва: Рост гос. ун-т путей сообщения. - Ростов н/Д, 2007. - 127 с.

2. Безопасность жизнедеятельности в условиях производства учеб. пособие/ В.М. Гарин, Т.А. Бойко, Е.Б. Воробьёв [и др.]; под общ. ред. В.М. Гарина; Рост. гос. ун-т путей сообщения Ростов н/Д, 2003. - 346 с.

3. Дегтярев В.О., Корягин О.Г., Фирсанов Н.Н. Осветительные установки железнодорожных территорий. - М.: Транспорт, 2009. - 223 с.

4. ОСТ 32,120-98. Стандарт отрасли. Нормы искусственного освещения объектов железнодорожного транспорта. - М.: Транспорт, 2004. - 70 с.

5. СНиП 23-05-95. Строительные нормы и правила Российской Федерации.

6. Естественное и искусственное освещение. - М.: Стройиздат, 2008. - 32 с.

7. Справочная книга для проектирования электрического освещения. Под ред. Г.М. Кнорринга - Л.: "Энергия", 2010. - 384 с., ил.

Размещено на Allbest.ru

...

Подобные документы

    Характеристика источников искусственного производственного освещения - газоразрядных ламп и ламп накаливания. Требования к эксплуатации осветительных установок. Методы расчета общего искусственного освещения рабочих помещений, расчет по удельной мощности.

    реферат , добавлен 26.02.2010

    Назначение искусственного освещения - создание условий видимости, сохранение хорошего самочувствия человека, уменьшение утомляемости глаз. Достоинства и недостатки использования ламп накаливания. Гигиеническое нормирование искусственного освещения.

    презентация , добавлен 02.10.2014

    Источники света, применяемые для искусственного освещения, их разделение на группы: газоразрядные лампы и лампы накаливания. Преимущества и недостатки источников освещения. Конструктивное исполнение светильников. Выбор ламп для безопасного освещения.

    презентация , добавлен 25.09.2015

    Характеристики осветительных условий, виды источников для искусственного освещения. Кривые распределения силы света в пространстве. Системы и способы производственного освещения. Нормирование, расчет и основные требования. Влияние освещения на зрение.

    контрольная работа , добавлен 12.11.2009

    Классификация искусственного освещения. Его функциональное назначение. Характеристика типов освещения. Искусственное освещение производственных цехов. Преимущества и недостатки. Современные приборы искусственного освещения промышленного производства.

    презентация , добавлен 03.10.2016

    Системы, виды и характеристики производственного освещения. Источники искусственного освещения, их преимущества и недостатки. Определение числа светильников для обеспечения нормированного значения освещенности методом использования светового потока.

    курсовая работа , добавлен 19.12.2014

    Изучение качественных и количественных характеристик оценки различных типов ламп. Анализ влияния типа светильника и цветовой отделки интерьера помещений на освещенность и коэффициент использования светового потока. Нормирование искусственного освещения.

    лабораторная работа , добавлен 28.03.2012

    Функциональное назначение искусственного освещения, его классификация. Искусственное освещение производственных цехов, его преимущества и недостатки. Современные приборы искусственного освещения промышленного производства, характеристика его типов.

    презентация , добавлен 31.03.2015

    Основные требования к искусственному освещению производственных помещений. Виды освещения и методы его расчета, их преимущества и недостатки. Сущность точечного метода (метода силы света) и особенности его применение для расчетов всех видов освещения.

    практическая работа , добавлен 18.04.2010

    Обеспечение электробезопасности техническими способами и средствами. Расчет искусственного освещения. Характеристика освещения по методу коэффициента использования светового потока. Лампы накаливания, относящиеся к источникам света теплового излучения.