Scheme of deep metal detectors to make at home. How to assemble a homemade metal detector to search for gold? What types of metal detectors are there?

Do-it-yourself metal detector - as the name suggests, such devices are made independently and are designed to search for metal objects and are used for a fairly narrow purpose. However, the methods for their implementation are quite diverse and constitute a whole direction in radio electronics.

Metal detector N. Martynyuk

The metal detector according to N. Martynyuk’s scheme (Fig. 1) is made on the basis of a miniature radio transmitter, the radiation of which is modulated by an audio signal [Рл 8/97-30]. The modulator is a low-frequency generator made according to the well-known symmetrical multivibrator circuit.

The signal from the collector of one of the multivibrator transistors is fed to the base of the high-frequency generator transistor (VT3). The operating frequency of the generator is located in the frequency range of the VHF-FM broadcast range (64... 108 MHz). A piece of television cable in the form of a coil with a diameter of 15...25 cm was used as the inductor of the oscillating circuit.

Rice. 1. Schematic diagram of N. Martynyuk’s metal detector.

If a metal object is brought closer to the inductor of the oscillating circuit, the generation frequency will noticeably change. The closer the object is brought to the coil, the greater the frequency shift will be. To record frequency changes, a conventional FM radio receiver is used, tuned to the frequency of the HF generator.

The receiver's automatic frequency control system should be disabled. If there is no metal object present, a loud beep is heard from the receiver's speaker.

If you bring a piece of metal to the inductor, the generation frequency will change and the volume of the signal will decrease. The disadvantage of the device is its reaction not only to metal, but also to any other conductive objects.

Metal detector based on a low-frequency LC generator

In Fig. 2 - 4 shows a circuit of a metal detector with a different operating principle, based on the use of a low-frequency LC oscillator and a bridge frequency change indicator. The search coil of the metal detector is made in accordance with Fig. 2, 3 (with correction of the number of turns).

Rice. 2. Metal detector search coil.

Rice. 3. Metal detector search coil.

The output signal from the generator is fed to a bridge measuring circuit. A high-resistance telephone capsule TON-1 or TON-2 is used as a bridge null indicator, which can be replaced with a pointer or other external alternating current measuring device. The generator operates at frequency f1, for example, 800 Hz.

Before starting work, the bridge is balanced to zero by adjusting the capacitor C* of the oscillating circuit of the search coil. The frequency f2=f1 at which the bridge will be balanced can be determined from the expression:

Initially, there is no sound in the telephone capsule. When a metal object is introduced into the field of the search coil L1, the generation frequency f1 will change, the bridge will become unbalanced, and a sound signal will be heard in the telephone capsule.

Rice. 4. Diagram of a metal detector with an operating principle based on the use of a low-frequency LC generator.

Metal detector bridge circuit

The bridge circuit of a metal detector using a search coil that changes its inductance when metal objects approach is shown in Fig. 5. An audio frequency signal from a low-frequency generator is supplied to the bridge. Using potentiometer R1, the bridge is balanced for the absence of an audio signal in the telephone capsule.

Rice. 5. Bridge circuit of a metal detector.

To increase the sensitivity of the circuit and increase the amplitude of the bridge unbalance signal, a low-frequency amplifier can be connected to its diagonal. The inductance of the L2 coil should be comparable to the inductance of the L1 search coil.

Metal detector based on a receiver with the CB range

A metal detector operating in conjunction with a mid-wave superheterodyne radio broadcast receiver can be assembled according to the circuit shown in Fig. 6 [R 10/69-48]. The design shown in Fig. 1 can be used as a search coil. 2.

Rice. 6. A metal detector operating in conjunction with a superheterodyne radio receiver in the CB range.

The device is a conventional high-frequency generator operating at 465 kHz (the intermediate frequency of any AM broadcast receiver). The circuits presented in Chapter 12 can be used as a generator.

In the initial state, the frequency of the HF generator, mixing in a nearby radio receiver with the intermediate frequency of the signal received by the receiver, leads to the formation of a difference frequency signal in the audio range. When the generation frequency changes (if there is metal in the field of action of the search coil), the tone of the sound signal changes in proportion to the amount (volume) of the metal object, its distance, and the nature of the metal (some metals increase the generation frequency, others, on the contrary, lower it).

A simple metal detector with two transistors

Rice. 7. Scheme of a simple metal detector using silicon and field-effect transistors.

The diagram of a simple metal detector is shown in Fig. 7. The device uses a low-frequency LC generator, the frequency of which depends on the inductance of the search coil L1. In the presence of a metal object, the generation frequency changes, which can be heard using the BF1 telephone capsule. The sensitivity of such a scheme is low, because It is quite difficult to detect small changes in frequency by ear.

Metal detector for small quantities of magnetic material

A metal detector for small quantities of magnetic material can be made according to the diagram in Fig. 8. A universal head from a tape recorder is used as a sensor for such a device. To amplify weak signals taken from the sensor, it is necessary to use a highly sensitive low-frequency amplifier, the output signal of which is fed to the telephone capsule.

Rice. 8. Diagram of a metal detector for small quantities of magnetic material.

Metal indicator circuit

A different method of indicating the presence of metal is used in the device according to the diagram in Fig. 9. The device contains a high-frequency generator with a search coil and operates at frequency f1. To indicate the signal magnitude, a simple high-frequency millivoltmeter is used.

Rice. 9. Schematic diagram of a metal indicator.

It is made on diode VD1, transistor VT1, capacitor C1 and milliammeter (microammeter) PA1. A quartz resonator is connected between the output of the generator and the input of the high-frequency millivoltmeter. If the generation frequency f1 and the frequency of the quartz resonator f2 coincide, the needle of the device will be at zero. As soon as the generation frequency changes as a result of introducing a metal object into the field of the search coil, the needle of the device will deviate.

The operating frequencies of such metal detectors are usually in the range of 0.1...2 MHz. To initially set the generation frequency of this and other devices of similar purpose, a variable capacitor or a tuning capacitor connected in parallel with the search coil is used.

Typical metal detector with two generators

In Fig. Figure 10 shows a typical diagram of the most common metal detector. Its operating principle is based on the frequency beats of the reference and search oscillators.

Rice. 10. Diagram of a metal detector with two generators.

Rice. 11. Schematic diagram of the generator block for a metal detector.

A similar node, common to both generators, is shown in Fig. 11. The generator is made according to the well-known “three-point capacitive” circuit. In Fig. Figure 10 shows a complete diagram of the device. The design shown in Fig. 1 is used as search coil L1. 2 and 3.

The initial frequencies of the generators must be the same. The output signals from the generators through capacitors C2, SZ (Fig. 10) are fed to a mixer that selects the difference frequency. The selected audio signal is fed through the amplifier stage on transistor VT1 to the telephone capsule BF1.

Metal detector based on the principle of generation frequency interruption

The metal detector can also operate on the principle of disrupting the generation frequency. The diagram of such a device is shown in Fig. 12. If certain conditions are met (the frequency of the quartz resonator is equal to the resonant frequency of the oscillatory LC circuit with the search coil), the current in the emitter circuit of transistor VT1 is minimal.

If the resonant frequency of the LC circuit changes noticeably, the generation will fail, and the readings of the device will increase significantly. It is recommended to connect a capacitor with a capacity of 1 ... 100 nF in parallel to the measuring device.

Rice. 12. Circuit diagram of a metal detector that works on the principle of disrupting the generation frequency.

Metal detectors for searching for small objects

Metal detectors, designed to search for small metal objects in everyday life, can be assembled according to those shown in Fig. 13 - 15 schemes.

Such metal detectors also operate on the principle of generation failure: the generator, which includes a search coil, operates in a “critical” mode.

The operating mode of the generator is set by adjusted elements (potentiometers) so that the slightest change in its operating conditions, for example, a change in the inductance of the search coil, will lead to disruption of the oscillations. To indicate the presence/absence of generation, LED indicators of the level (presence) of alternating voltage are used.

Inductors L1 and L2 in the circuit in Fig. 13 contain, respectively, 50 and 80 turns of wire with a diameter of 0.7...0.75 mm. The coils are wound on a 600NN ferrite core with a diameter of 10 mm and a length of 100... 140 mm. The operating frequency of the generator is about 150 kHz.

Rice. 13. Circuit of a simple metal detector with three transistors.

Rice. 14. Scheme of a simple metal detector using four transistors with light indication.

Inductors L1 and L2 of another circuit (Fig. 14), made in accordance with the German patent (No. 2027408, 1974), have 120 and 45 turns, respectively, with a wire diameter of 0.3 mm [P 7/80-61 ]. A 400NN or 600NN ferrite core with a diameter of 8 mm and a length of 120 mm was used.

Household metal detector

A household metal detector (HIM) (Fig. 15), previously produced by the Radiopribor plant (Moscow), allows you to detect small metal objects at a distance of up to 45 mm. The winding data of its inductors are unknown, however, when repeating the circuit, you can rely on the data given for devices of similar purposes (Fig. 13 and 14).

Rice. 15. Scheme of a household metal detector.

Literature: Shustov M.A. Practical circuit design (Book 1), 2003

Hello, dear friends! Many radio amateurs dream of assembling a simple metal detector with their own hands to search for treasures. As a child, I also had such a dream, to find a huge wooden chest with treasure. And so I decided to implement it. Today I will tell you how to make a simple metal detector using two NE555 chips. The device operates on the principle of induction balance, consists of two generators operating at the same frequency, and is designed to search for ferrous and non-ferrous metals without discrimination. The metal detector has good sensitivity; it is capable of detecting a five-ruble coin at a depth of up to fifteen centimeters, and larger objects up to eighty centimeters.

This figure shows a circuit of a metal detector based on two NE555 chips.

A simple metal detector based on two NE555 chips

And this is the printed circuit board of the metal detector.

Printed circuit board of a metal detector on two NE555 chips

The operating principle of the metal detector is very simple: two generators operating at the same frequency make up a single balanced induction system that operates on the verge of failure. As soon as metal enters the range of action of the coils, the induction balance is disrupted and a signal is heard in the speakers.

The coils of the metal detector must be absolutely identical. Each coil is wound separately on a frame with a diameter of 19 centimeters and contains 30 turns of wire 0.5 - 0.7 mm in varnish insulation.
To wind the coils, I used PETV-2 winding wire d=0.5 mm, I pulled it out of an old transformer, and used a pan of a suitable diameter as a frame. I fastened the coils in six places with strong thread, then soaked them in bakelite varnish and wrapped them with electrical tape.

After soldering all components, the device must be configured correctly. Resistor P1 at 100K is designed to adjust the frequency of the receiving oscillator. Resistor P2 is 200K for rough adjustment of the sensitivity of the device.

Remote resistor P3 at 100K for fine-tuning the sensitivity of the metal detector. We put all resistors in the middle position.

If there is no squeak, move one coil relative to the other in different directions. The device will beep in two positions, at low overlap and at medium overlap. But we are only interested in small overlap; this is where the device detects metal. Position the coils so that a crackling sound is heard in the speaker.

If the metal detector constantly beeps or is silent and does not react in any way to the movement of the coils or the rotation of resistor P1, then adjust the device with resistor P2.

Resistor P3 is designed to adjust the metal detector after turning on the power, and also in the event of a low battery, it must be slightly adjusted to achieve a stable crackling sound and, accordingly, maximum sensitivity of the device.

To check the functionality of the metal detector, bring a metal object to the junction of the two coils; a loud squeak will be heard in the speaker.

All that remains is to securely secure the coils using hot glue and re-perform the final adjustment of the metal detector with resistor P1.

I placed all the components in a suitable plastic box, which I bought at the nearest electrical store. I glued the board and speaker with hot glue, and inserted eight batteries into a special compartment for batteries.

The handle of resistor P3 was brought out. The switch was simply stuck into the drilled hole.

To test the device, I went out of town. The weather is just fabulous! Metal whispers, find me! There was once a tractor brigade here...

Here we go! It’s a little inconvenient to hold a camera with one hand, a metal detector with the other, and wade through dry grass.

Aha, it seems that I found it!

This is my first find, a large rusty nut. Let's go look further...

Wish you luck! See you in new articles!

How to make a sensitive metal detector with your own hands and what circuit of this device is most popular among craftsmen? Metal detectors are electronic induction devices, the main task of which is to detect metal objects located in a neutral or weakly conducting environment - such as soil, water, walls, wood.

The device has a search coil, in which, when turned on, an electromagnetic field is generated that spreads around. With its help you can explore the ground, stones, water, trees and air. The electromagnetic field created by the search coil contributes to the formation of eddy currents on the surface of metals that fall within the range of the device.

If eddy currents occur, the metal object's own counter electromagnetic field is created, which reduces the power of the electromagnetic field created by the search coil. This is recorded by the electronic circuit of the device. After processing the received information, the metal detector sends a signal that a metal object has been detected.

Cheap models of metal detectors differ from expensive ones only in the methods of emitting radio waves and methods of capturing, processing and decoding secondary signals. More expensive devices are able to determine with a certain degree of probability which metal has been detected even before it is extracted. The depth of the object and some other parameters can also be determined.

Treasure hunters often wonder whether it is possible to make at least a simple metal detector at home. Many of them would like to make the device themselves. There are craftsmen who are trying to somehow improve a ready-made metal detector, but there are also treasure hunters who are looking for treasures with homemade inventions. However, do-it-yourself devices for searching for hidden objects are usually used only for finding and collecting scrap metal. For such work, the simplest device that can easily catch large metal objects is sufficient. Such seekers are usually not interested in small metal objects.

Even if you didn’t succeed in making a metal detector with your own hands at home, the experience gained during the experiment will also be useful. After reading specialized literature and studying device diagrams and operating principles, it will not be difficult to choose a good metal detector made in an industrial environment.

To create a metal detector at home, improvised means alone are not enough. To do this, you need to have some experience in radio electronics, good skills in working with diagrams and drawings, as well as certain equipment. You can try to assemble a device for searching for metal objects yourself, starting from the circuit and ending with the search coil. You can also purchase a kit to create a metal detector.


How to make a simple metal detector without special equipment with your own hands according to the scheme:



♦ DIAGRAMS AND STEP-BY-STEP MASTER CLASS ON MANUFACTURING A “BUTTERFLY” METAL DETECTOR WITH YOUR OWN HANDS


- click on the photo and expand the step-by-step instructions

♦ VIDEO LESSONS

A device that allows you to search for metal objects located in a neutral environment, such as soil, due to their conductivity is called a metal detector (metal detector). This device allows you to find metal objects in various environments, including in the human body.

Largely thanks to the development of microelectronics, metal detectors, which are produced by many enterprises around the world, are highly reliable and have small overall and weight characteristics.

Not so long ago, such devices could most often be seen among sappers, but now they are used by rescuers, treasure hunters, and utility workers when searching for pipes, cables, etc. Moreover, many “treasure hunters” use metal detectors, which they assemble with their own hands .

Design and principle of operation of the device

Metal detectors on the market operate on different principles. Many believe that they use the principle of pulse echo or radar. Their difference from locators lies in the fact that the transmitted and received signals act constantly and simultaneously; in addition, they operate at the same frequencies.

Devices operating on the “receive-transmit” principle record the signal reflected (re-emitted) from a metal object. This signal appears due to the exposure of a metal object to an alternating magnetic field generated by the metal detector coils. That is, the design of devices of this type provides for the presence of two coils, the first is transmitting, the second is receiving.

Devices of this class have the following advantages:

  • simplicity of design;
  • Great potential for detecting metallic materials.

At the same time, metal detectors of this class have certain disadvantages:

  • metal detectors can be sensitive to the composition of the soil in which they search for metal objects.
  • technological difficulties in the production of the product.

In other words, devices of this type must be configured with your own hands before work.

Other devices are sometimes called beat metal detectors. This name comes from the distant past, more precisely from the times when superheterodyne receivers were widely used. Beating is a phenomenon that becomes noticeable when two signals with similar frequencies and equal amplitudes are summed. The beat consists of pulsating the amplitude of the summed signal.

The signal pulsation frequency is equal to the difference in the frequencies of the summed signals. By passing such a signal through a rectifier, it is also called a detector, and the so-called difference frequency is isolated.

This scheme has been used for a long time, but nowadays it is not used. They were replaced by synchronous detectors, but the term remained in use.

A beat metal detector works using the following principle - it registers the difference in frequencies from two generator coils. One frequency is stable, the second contains an inductor.

The device is configured with your own hands so that the generated frequencies match or at least are close. As soon as metal enters the action zone, the set parameters change and the frequency changes. The frequency difference can be recorded in a variety of ways, from headphones to digital methods.

Devices of this class are characterized by a simple sensor design and low sensitivity to the mineral composition of the soil.

But besides this, when using them, it is necessary to take into account the fact that they have high energy consumption.

Typical design

The metal detector includes the following components:

  1. The coil is a box-type structure that houses the signal receiver and transmitter. Most often, the coil has an elliptical shape and polymers are used for its manufacture. A wire is connected to it connecting it to the control unit. This wire transmits the signal from the receiver to the control unit. The transmitter generates a signal when metal is detected, which is transmitted to the receiver. The coil is installed on the lower rod.
  2. The metal part on which the reel is fixed and its angle of inclination is adjusted is called the lower rod. Thanks to this solution, a more thorough examination of the surface occurs. There are models in which the lower part can adjust the height of the metal detector and provides a telescopic connection to the rod, which is called the middle one.
  3. The middle rod is the unit located between the lower and upper rods. Devices are attached to it that allow you to adjust the size of the device. On the market you can find models that consist of two rods.
  4. The top rod usually has a curved appearance. It resembles the letter S. This shape is considered optimal for attaching it to the hand. An armrest, a control unit and a handle are installed on it. The armrest and handle are made of polymer materials.
  5. The metal detector control unit is necessary to process the data received from the coil. After the signal is converted, it is sent to headphones or other display devices. In addition, the control unit is designed to regulate the operating mode of the device. The wire from the coil is connected using a quick release device.

All devices included in the metal detector are waterproof.

It is this relative simplicity of design that allows you to make metal detectors with your own hands.

Types of metal detectors

There is a wide range of metal detectors on the market, used in many areas. Below is a list that shows some of the varieties of these devices:

Most modern metal detectors can find metal objects at a depth of up to 2.5 m; special deep products can detect a product at a depth of up to 6 meters.

Operating frequency

The second parameter is the operating frequency. The thing is that low frequencies allow the metal detector to see to a fairly large depth, but they are not able to see small details. High frequencies allow you to notice small objects, but do not allow you to view the ground to great depths.

The simplest (budget) models operate at one frequency; models that fall into the middle price range use 2 or more frequencies. There are models that use 28 frequencies when searching.

Modern metal detectors are equipped with a function such as metal discrimination. It allows you to distinguish the type of material located at depth. In this case, when ferrous metal is detected, one sound will sound in the search engine’s headphones, and when non-ferrous metal is detected, another sound will sound.

Such devices are classified as pulse-balanced. They use frequencies from 8 to 15 kHz in their work. Batteries of 9 - 12 V are used as a source.

Devices of this class are capable of detecting a gold object at a depth of several tens of centimeters, and ferrous metal products at a depth of about 1 meter or more.

But, of course, these parameters depend on the device model.

How to assemble a homemade metal detector with your own hands

There are many models of devices on the market for detecting metal in the ground, walls, etc. Despite its external complexity, making a metal detector with your own hands is not that difficult and almost anyone can do it. As noted above, any metal detector consists of the following key components - a coil, a decoder and a power supply signaling device.

To assemble such a metal detector with your own hands, you need the following set of elements:

  • controller;
  • resonator;
  • capacitors of various types, including film ones;
  • resistors;
  • sound emitter;
  • Voltage regulator.

Do-it-yourself simple metal detector

The metal detector circuit is not complicated, and you can find it either on the vast world wide web or in specialized literature. Above is a list of radio elements that are useful for assembling a metal detector with your own hands at home. You can assemble a simple metal detector with your own hands using a soldering iron or other available method. The main thing is that the parts should not touch the body of the device. To ensure the operation of the assembled metal detector, power supplies of 9 - 12 volts are used.

To wind the coil, use a wire with a cross-sectional diameter within 0.3 mm; of course, this will depend on the chosen circuit. By the way, the wound coil must be protected from exposure to extraneous radiation. To do this, shield it with your own hands using ordinary food foil.

To flash the controller firmware, special programs are used, which can also be found on the Internet.

Metal detector without chips

If a novice “treasure hunter” has no desire to get involved with microcircuits, there are circuits without them.

There are simpler circuits based on the use of traditional transistors. Such a device can find metal at a depth of several tens of centimeters.

Deep metal detectors are used to search for metals at great depths. But it is worth noting that they are not cheap and therefore it is quite possible to assemble it yourself. But before you start making it, you need to understand how a typical circuit works.

The circuit of a deep metal detector is not the simplest and there are several options for its implementation. Before assembling it, you need to prepare the following set of parts and elements:

  • capacitors of various types - film, ceramic, etc.;
  • resistors of different values;
  • semiconductors - transistors and diodes.

Nominal parameters and quantity depend on the selected circuit diagram of the device. To assemble the above elements, you will need a soldering iron, a set of tools (screwdriver, pliers, wire cutters, etc.), and material for making the board.

The process of assembling a deep metal detector looks something like this. First, a control unit is assembled, the basis of which is a printed circuit board. It is made from textolite. Then the assembly diagram is transferred directly to the surface of the finished board. After the drawing is transferred, the board must be etched. To do this, use a solution that includes hydrogen peroxide, salt, and electrolyte.

After the board is etched, it is necessary to make holes in it to install the circuit components. After tinning the board. The most important stage is coming. Do-it-yourself installation and soldering of parts onto a prepared board.

To wind the coil with your own hands, use PEV brand wire with a diameter of 0.5 mm. The number of turns and the diameter of the coil depend on the selected circuit of the deep metal detector.

A little about smartphones

There is an opinion that it is quite possible to make a metal detector from a smartphone. This is wrong! Yes, there are applications that install under Android OS.

But in fact, after installing such an application, he will actually be able to find metal objects, but only pre-magnetized ones. It will not be able to search for, much less discriminate against, metals.

Metal detector circuit

Today I would like to present to your attention a diagram of a metal detector, and everything related to it, what you see in the photograph. After all, it is sometimes so difficult to find the answer to a question in a search engine - Diagram of a good metal detector

In other words, the metal detector has a name Tesoro Eldorado

The metal detector can operate in both the search mode for all metals and background discrimination.

Technical characteristics of the metal detector.

Operating principle: induction balanced
-Operating frequency, kHz 8-10kHz
-Dynamic operating mode
-Precise detection mode (Pin-Point) is available in static mode
-Power supply, V 12
-There is a sensitivity level regulator
-There is a threshold tone control
-Ground adjustment is available (manual)

Detection depth in the air with a DD-250mm sensor In the ground, the device sees targets almost the same as in the air.
-coins 25mm - about 30cm
-gold ring - 25cm
-helmet 100-120cm
-maximum depth 150cm
-Consumption current:
-No sound approximately 30 mA

And the most important and intriguing thing is the diagram of the device itself


The picture is easily enlarged when you click on it

To assemble the metal detector you need the following parts:

So that you don’t have to spend a long time setting up the device, do the assembly and soldering carefully; the board should not contain any clamps.

For tinning boards, it is best to use rosin in alcohol; after tinning the tracks, do not forget to wipe the tracks with alcohol

Parts side board



We begin assembly soldering jumpers, then resistors, further sockets for microcircuits And all the rest. One more small recommendation, now regarding the manufacture of the device board. It is very desirable to have a tester that can measure the capacitance of capacitors. The fact is that the device These are two identical amplification channels, therefore the amplification through them should be as identical as possible, and for this it is advisable to select those parts that are repeated on each amplification stage so that they have the most identical parameters as measured by the tester (that is, what are the readings in a particular stage on one channel - the same readings on the same stage and in another channel)

Making a coil for a metal detector

Today I would like to talk about the manufacture of a sensor in a finished housing, so the photo is more than words.
We take the housing, attach the sealed wire in the right place and install the cable, ring the cable and mark the ends.
Next we wind the coils. The DD sensor is manufactured according to the same principle as for all balanced devices, so I will focus only on the required parameters.
TX – transmitting coil 100 turns 0.27 RX – receiving coil 106 turns 0.27 enameled winding wire.

After winding, the coils are tightly wrapped with thread and impregnated with varnish.

After drying, wrap tightly with electrical tape around the entire circumference. The top is shielded with foil; between the end and the beginning of the foil there should be a gap of 1 cm not covered by it, in order to avoid a short-circuited turn.

It is possible to shield the coil with graphite; to do this, mix graphite with nitro varnish 1:1 and cover the top with a uniform layer of tinned copper 0.4 wire wound on the coil (without gaps), connect the wire to the cable shield.

We put it into the case, connect it and roughly bring the coils into balance, there should be a double beep for the ferrite, a single beep for the coin, if it’s the other way around, then we swap the terminals of the receiving winding. Each of the coils is adjusted in frequency separately; there should be no metal objects nearby!!! The coils are tuned with an attachment for measuring resonance. We connect the attachment to the Eldorado board in parallel with the transmitting coil and measure the frequency, then with the RX coil and a selected capacitor we achieve a frequency 600 Hz higher than that obtained in TX.

After selecting the resonance, we assemble the coil together and check whether the device sees the entire VDI scale from aluminum foil to copper; if the device does not see the entire scale, then we select the capacitance of the resonant capacitor in the RX circuit in steps of 0.5-1 nf in one direction or another, and in addition the moment when the device will see foil and copper at a minimum of discrimination, and when the discrimination is turned up, the entire scale will be cut out in turn.

We finally reduce the coils to zero, fixing everything with hot glue. Next, to lighten the coil, we glue the voids with pieces of polystyrene foam, the foam sits on the hot glue, otherwise it will float up after filling the coil.

Pour the first layer of epoxy, without adding to the top 2-3mm

Fill in the second layer of resin with color. An aniline dye is a good choice for dyeing fabric; the powder comes in different colors and costs a penny. The dye must first be mixed with the hardener, then the hardener must be added to the resin; the dye will not dissolve in the resin immediately.

To assemble the board correctly, start by checking the correct power supply to all components.

Take the circuit and the tester, turn on the power on the board, and, checking the circuit, go through the tester at all points on the nodes where power should be supplied.
When the discrimination knob is set to minimum, the device should see all non-ferrous metals

, when screwing the discrim, they should be cut out

all metals in order up to copper should not be cut out if the deviceit works this way, which means it is configured correctly. The discrimination scale needs to be selected so that it fits completely into a full turn of the discrimination knob, this is done by selecting c10. When the capacity decreases, the scale stretches and vice versa.