Выносливость и основы методики ее воспитания. Выносливость - рефераты по физической культуре - рефераты - каталог статей - рефераты и многое другое Изменения ода связанные с данной двигательной способностью

Выносливость - способность наиболее длительно выполнять специализированную работу аэробного характера без снижения ее эффективности . Выносливость это способность противостоять утомлению .
Различают 2 формы проявления выносливости – общую и специальную.
Общая выносливость способность длительно выполнять любую циклическую работу умеренной мощности с участием больших групп мышц .
Специальная выносливость проявляется в конкретных видах двигательной деятельности.
Физиологической основой общей выносливости является высокий уровень аэробных возможностей человека – способность выполнять работу за счет энергии реакций окисления.
Аэробные возможности зависят от:
Аэробной мощности, которая определяется абсолютной и относительной величиной максимального потребления кислорода (МПК) и Аэробной емкости - суммарной величины потребления кислорода на всю работу.
Общая выносливость зависит от доставки кислорода мышцам, определяется функционированием кислородтранспортной системы: сердечно-сосудистой, дыхательной и системой крови.
Развитие общей выносливости обеспечивается разносторонними перестройками в дыхательной системе. Повышение эффективности дыхания достигается:
Увеличением (на 10-20%) легочных объемов и емкостей (ЖЕЛ достигает 6-8л и более)
Нарастанием глубины дыхания (50% ЖЕЛ)
Увеличением диффузионной способности легких, что обусловлено увеличением альвеолярной поверхности и объема крови в легких, протекающей через расширяющуюся сеть капилляров.
Увеличением мощности и выносливости дыхательных мышц, что приводит к росту объема вдыхаемого воздуха по отношению к функциональной остаточной емкости легких
Все эти изменения способствуют также экономизации дыхания: большему поступлению кислорода в кровь при меньших величинах легочной вентиляции.


Решающую роль в развитии общей выносливости играют морфофункциональные изменения в сердечно-сосудистой системе, отражающие адаптацию к длительной работе:
Увеличение объема сердца , утолщение сердечной мышцы – спортивная гипертрофия
Рост сердечного выброса(увеличение ударного объема крови)
Замедление ЧСС в покое(до 40-50 ударов в минуту) в результате парасимпатических влияний – спортивная брадикардия, что облегчает восстановление сердечной мышцы и последующую ее работоспособность
Снижение артериального давления в покое (ниже 105 мм.рт.ст) – спортивная гипотония.
В системе крови повышению общей выносливости способствуют:
Увеличение объема циркулирующей крови (на 20%), за счет увеличения объема плазмы
Снижение вязкости крови и облегчение кровотока
Больший венозный возврат крови за счет более сильных мощных сокращений сердца
Увеличение общего количества эритроцитов и гемоглобина (но следует отметить, что при росте объема плазмы показатели их относительной концентрации в крови снижаются)
Уменьшение содержания лактата в крови при работе, связанное с преобладанием в мышцах выносливых людей медленных волокон, использующих лактат как источник энергии, и во-вторых, обусловленное увеличение емкости буферных систем крови (щелочных резервов). При этом лактатный порог анаэробного обмена (ПАНО) так же нарастает, как и вентиляционный ПАНО.
В скелетных мышцах преобладают медленные волокна(80-90%). Рабочая гипертрофия протекает по саркоплазматическому типу, т. е. за счет роста объема саркоплазмы. В ней накаливаются запасы гликогена, липидов, миоглобина, становится богаче капиллярная сеть, увеличивается число и размеры митохондрий. Мышечные волокна включатся в работу посменно, восстанавливая свои ресурсы в моменты отдыха.
В ЦНС работа на выносливость сопровождается формированием рабочих доминант, которые обладают высокой помехоустойчивостью, отдаляя развитие запредельного торможения в условиях монотонной работы. Особой способностью к длительным циклическим нагрузкам обладают спортсмены с сильной уравновешенной нервной системой и невысоким уровнем подвижности – флегматики.
Специальная выносливость в циклических видах спорта зависит от длины дистанции, которая определяет соотношение аэробного и анаэробного энергообеспечения. В на длинные дистанции соотношение аэробной и анаэробной работы порядка 95% и 5%. В спринте – 5% и 95%.
Специальная выносливость к статической работе базируется на высокой способности нервных центров и работающих мышц поддерживать непрерывную активность без отдыха в анаэробных условиях.
Силовая выносливость зависит от переносимости нервной системой и двигательным аппаратом многократных повторений натуживания, вызывающего прекращение кровотока в нагруженных мышцах и кислородное голодание мозга. Повышение резервов мышечного гликогена и кислородных запасов в миоглобине облегчает работу мышц. Но так как слишком много ДЕ привлекается к работе, лимит резервных ДЕ становится мал, что лимитирует длительность поддержания усилий.
Скоростная выносливость определяется устойчивостью нервных центров к высокому темпу активности. Она зависит от быстрого восстановления АТФ в анаэробных условиях за счет креатинфосфата и реакций гликолиза.
Выносливость в ситуационных видах спорта обусловлена устойчивостью ЦНС и сенсорных систем к работе переменной мощности и характера – «рваному» режиму, вероятностным перестройкам ситуации, многоальтернативному выбору, сохранению координации при постоянном раздражении вестибулярного аппарата.
Выносливость к вращениям и ускорениям требует хорошей устойчивости вестибулярной системы.
Выносливость к гипоксии, характерна для альпинистов, связана с понижением тканевой чувствительности нервных центров, сердечной и скелетных мышц к недостатку кислорода. Это свойство в значительной степени врожденное.
Резервами выносливости являются:
Мощность механизмов обеспечения гомеостаза – адекватная деятельность сердечно-сосудистой системы, повышение кислородной емкости крови и емкости ее буферных систем, совершенство регуляции водно-солевого обмена выделительной системы и регуляция теплообмена, снижение чувствительности тканей к сдвигам гомеостаза
Тонкая и стабильная нервно-гуморальная регуляция механизмов поддержания гомеостаза и адаптация организма к работе в измененной среде.

Следует признать, что не только спортсмены и тренеры практически не могут придать таким мероприятиям индивидуальный характер, но и врачи – по крайней мере, до того, как появятся какие-то симптомы травмы или заболевания ОДА. Кроме того, общеизвестно, что даже микротравмы могут сделать невозможным продолжение подготовки спортсмена, тем более при необходимости сохранения или увеличения уровня физических нагрузок. Отсюда вытекает задача возможно более раннего выявления поражений ОДА, решаемая сегодня в недостаточной степени из-за ограниченных возможностей методов диагностики, обычно применяемых в спортивной медицине.

Между тем, использование методов традиционной китайской медицины (ТКМ), может позволить судить не только о наличии поражений ОДА на ранних стадиях, но даже о склонности к появлению таких поражений, т.е. на уровне, когда еще отсутствуют какие-либо связанные с ними жалобы или внешние проявления. Следует сразу отметить, что использование этих методов требует специальной подготовки в области ТКМ, хорошего представления о ее специфичных теоретических основах, владения ее практическими методами, веками доказавшими свою состоятельность и сегодня достаточно широко применяемыми в медицине. Одним из таких методов является пульсовая диагностика. Однако в классическом виде она очень сложна и требует многолетнего обучения. Проблему современного использования пульсовой диагностики с использованием высоких технологий в достаточной мере решает созданный отечественными специалистами и апробированный в Российском научном центре хирургии РАМН комплекс компьютерной пульсометрии WinPulse. Он имеет соответствующие сертификаты и в течение последних лет успешно используется в России и за рубежом. Основанный на акустических принципах с использованием интеллектуального датчика и сложного программного обеспечения, данный комплекс позволяет выявлять нарушения функции внутренних органов уже на доклинической стадии, показывая степень данных нарушения в числовом выражении, что, безусловно, объективизирует получаемую информацию, позволяет сохранить ее и проследить динамику процесса, делать обоснованные заключения. Это касается и вопроса о состоянии отдельных составляющих ОДА. Дело в том, что согласно принципам ТКМ, от состояния функции, например, печени, прямо зависит состояние связок, сухожилий и фасций. Состояние костной ткани непосредственно зависит от состояния функции почек, а состояние мышечной ткани – от состояния канала селезенки. Недостаточность энергоснабжения этих каналов-органов ведет к разнообразным дефектам ОДА. Таким образом, находя, в частности – методом компьютерной пульсометрии, недостаточность функции либо из данных каналов, мы одновременно определяем «слабое звено» в системе ОДА.

Однако, получив эти сведения, неизбежно сталкиваешься с очередной задачей – что делать дальше, особенно, если отсутствуют какие-либо проявления поражения ОДА, т.е. имеет место их доклиническая стадия. Неоценимую помощь в такой ситуации могут оказать препараты ТКМ, имеющие природное происхождение. Они чрезвычайно успешно применяются в спортивной медицине КНР со времен подготовки к Олимпийским игр 1992 г. С тех же пор известны высокие достижения представителей Китая во многих видах спорта при отсутствии положительных допинг-проб. Первый подобный российский опыт, связанный с подготовкой к Олимпиаде в Афинах, оказался столь удачным, что в структуре ВНИИФКа был создан специальный отдел ТКМ. Успехи многих российских спортсменов на зимней Олимпиаде в Турине связаны с использованием в ходе их тренировок и соревнований ряда препаратов ТКМ, которые применялись и для подготовки ряда сборных команд России к Играм в Пекине. Однако, эти средства использовались, в основном, для содействия развитию выносливости и скоростно-силовых качеств. В то же время, возможности целого ряда препаратов ТКМ позволяют эффективно применять их в контексте рассматриваемой нами проблемы, в т.ч. в массовом спорте. Все упоминаемые ниже препараты успешно прошли федеральные сертификационные и антидопинговые процедуры. С целью укрепления связок и сухожилий показано использование растительного препарата «Лю Вэй», некоторые компоненты восполняют нарушенную функцию печени и почек. Последнее обстоятельство говорит о возможности данного препарата укреплять костную ткань, однако более эффективным для этого оказывается применение пудры натурального жемчуга «Хуанхэ». Высокий эффект в данном плане наблюдается также при назначении препарата «Белый феникс», улучшающий функцию печени и почек. Для лучшей фиксации суставов, особенно в условиях непрекращающихся тренировок, используется также растительный препарат «Пилюли Ци», повышающий мышечный тонус а также способствующий росту мышечной массы.

Основой всех этих профилактических (при необходимости, и лечебных) мероприятий должна стать диетология, основанная на принципах ТКМ. Нельзя забывать, используя препараты ТКМ, что еще в «Шэнь-нун бэнь цао цзин» (Каноне травоведения Святого земледельца) они подразделялись на три разряда. Главный из них – «небесный» (шан пинь) составляли «средства, которые способствуют питанию жизни», т.е. продукты питания. В результате многолетней работы нами обобщены материалы, позволяющие в современных условиях формировать диету, в том числе спортсмена, для прицельного воздействия на конкретные каналы-органы.

Немаловажны и другие известные эффекты всех этих препаратов: повышение возможностей скоростной работы мышц при приеме «Пилюль Ци» и ускорение проведения нервно-мышечных импульсов при приеме «Хуанхэ», способствующие усилению скоростно-силовых качеств. Известно также, что у многих спортсменок на фоне интенсивных тренировок развиваются значительные нарушения менструального цикла, заметно снижающие работоспособность и результативность. Коррекция подобных состояний обычно связана с приемом гормональных препаратов, что несовместимо с серьезными занятиями спортом. Здесь едва ли не единственным средством выбора является препарат «Белый феникс», поскольку сексуальная функция по канонам ТКМ неразрывно связана с функцией почек. Как считают китайские спортивные врачи: «Белый феникс» возвращает женщине все то, что отнимает у нее спорт».

Таким образом, использование методов диагностики ТКМ (в т.ч. современной модификации) и ее препаратов природного происхождения позволяет, как показывает и наш практический опыт, может значительно расширить возможности раннего обнаружения поражений ОДА у спортсменов и эффективно корректировать имеющиеся нарушения различных функций. Значительное усиление влияния соответствующих препаратов на состояние каналов-органов печени, селезенки и почек (а соответственно, на состояние сухожилий и связок, мышц и костей) может и должно оказать питание, спортсменов, основанное на принципах ТКМ, а не только на требуемом для каждого вида спорта балансе белков-липидов-углеводов.

Заслуженный тренер, специалист в области спортивной и космической медицины, врач Игорь Завьялов рассказывает о дилемме, которая часто возникает во время тренировок - сила или выносливость? Как правильно заниматься, чтобы не пострадал ни один из этих показателей - читайте ниже.

- Отношение к спорту может быть кардинально противоположным. Пьер Кубертен писал ему оду. Уинстон Черчиль язвил, что стал долгожителем благодаря отсутствию спорта в его жизни. Гиппократ уверял, что спорт очищает организм.

Череда недавних скандалов, связанных с применением допинга даёт повод некоторым считать, что спорт не только не честен, но и крайне вреден для здоровья!

Так ли это? Лаборатория безопасного спорта доктора Завьялова поможет найти ответы на интересующие вас вопросы.

Игорь Завьялов

Человек устроен удивительнейшим образом. Мы стремительно приспосабливаемся к сложным условиям окружающей среды. Благодаря этой способности Homo sapiens стал доминирующим видом на планете Земля. Не менее быстро все системы нашего организма адаптируются и к тренировочным нагрузкам, которые мы задаём, пытаясь повысить уровень своего фитнеса. Сitius, altius, fortius! (Быстрее, выше, сильнее!) - этот известный олимпийский девиз, по сути, отражает только скоростно-силовые качества. А как же быть с выносливостью? Сила и выносливость - близнецы-братья?

Не совсем так. Вернее, совсем не так! Чтобы быть сильным и выносливым, оказывается, недостаточно много и упорно тренироваться. Нужно тренироваться правильно и в соответствии с законами физиологии. Конечно же, у профессиональных спортсменов и тренеров есть свои секреты. Полагаю, вы тоже имеете право их знать.

Кому это нужно

Любому из нас. Даже тем, кто не любит спорт по тем или иным причинам. По достижении 30-летнего возраста мы начинаем терять мышечную массу, а вместе с ней - силу и мощность. Сила, развиваемая нашими мышцами, находит отражение в мощности. Чем быстрее мы проявляем силу, тем мощнее наше движение. Если игнорировать этот факт, то к 60 годам можно лишиться до 25-30% своих «мышечных» накоплений, а значит и мощности. А это довольно серьёзная проблема, которая тянет за собой целый ворох так называемых возрастных изменений и заболеваний. Возможно, природа полагает, что к 30 годам мы уже достаточно повзрослели, чтобы начать самим о себе заботиться? Кардионагрузок явно недостаточно, нужны ещё резистентные силовые. Называйте всё это двигательной активностью, физической нагрузкой или спортом - суть одна: сила так же необходима для жизни, как и выносливость!

Впрочем, те из нас, кто занимается спортом (физкультурой) осторожно и в соответствии с рекомендациями ВОЗ, обычно с конкуренцией силы и выносливости не сталкиваются. Но это может быть реальной проблемой для продвинутых любителей и профессионалов в тех видах спорта, где мощность и выносливость необходимы в «одном флаконе»! Хорошим примером этого могут быть игровые виды спорта. Не так уж важно, играете вы в НХЛ, КХЛ, ФНЛ или «Ночной лиге» - нередко возникает ситуация, когда в середине и особенно в конце сезона игроки «не бегут», а команда попадает в «яму». Что греха таить, зачастую мы «клеймим» игроков с помощью крылатого выражения «Глаза у них не горят»! Глаза тут ни при чём, а настоящий виновник - это конкуренция между мощностью и выносливостью, известная специалистам как закон интерференции.

Что же такое закон интерференции

Впервые в специальной литературе он был упомянут в начале 80-х, хотя спортсмены и тренеры сталкивались с этим явлением и прежде. Было замечено, что при попытке дизайна процесса, направленного на параллельное совершенствование силы и выносливости в одной тренировке, организм всегда предпочитал улучшать выносливость, принося силу в жертву. Причём чем выше уровень тренированности спортсмена, тем больше конфликт между выносливостью и силой. Новички, только приступившие к регулярным занятиям, улучшаются по всем показателям. В то же время опытные спортсмены начинают испытывать трудности, пытаясь одновременно совершенствовать силу и выносливость.

Пытаясь разобраться в этом феномене, исследователи смогли установить, что одной из главных причин является конкуренция ферментов, отвечающих за адаптацию организма к различным видам физической нагрузки. Так, во время тренировки на выносливость выделяется АМПК (аденозинмонофосфат-активируемая протеинкиназа) - фермент, активирующий окисление жиров и повышающий аэробные возможности производства энергии. Этот фермент одновременно является и сенсором, активируемым в ответ на стресс и низкий уровень внутриклеточной энергии. В то же время АМПК подавляет выделение другого фермента - mTORC1 (протеинкиназа мишень рапамицина млекопитающих), который активируется после силовых тренировок и отвечает за мышечную гипертрофию и силу.

Сложно ответить однозначно, почему сила и гипертрофия приносятся в жертву выносливости, но так уж сложилось в процессе эволюции. Возможно, что модный нынче термин «оптимизация энергосбережения» проясняет ситуацию. Важно, что это факт, который нельзя игнорировать при грамотном дизайне тренировочного процесса.

Что же делать?

Важно понимать, что если на последних минутах футбольного, хоккейного или баскетбольного матча вы хотите бить по мячу, «щёлкать» по шайбе или выпрыгивать с той же мощью, что и в начале, вам следует тренироваться по особым правилам. Понятно, что если пытаться тренировать силу одновременно с выносливостью, то «биохимически» перевес всегда будет на стороне выносливости. Необходимо диверсифицировать тренировочный процесс таким образом, чтобы оставить конкурентное поле битвы «биохимии» за выносливостью (раз уж так сложилось в ходе эволюции), но при этом ещё найти и способ совершенствовать силу. И способ этот специалистам хорошо известен: следует совершенствовать силу за счёт тренировки нервной системы. Помним, что мощность - это сила, приложенная в единицу времени. Чем быстрее, тем мощнее (удар, щелчок, прыжок). Огромное значение имеют индивидуальные, генетические особенности спортсмена, уровень его тренированности и адаптации к нагрузкам.

Вместе с тем на основании современных исследований и личного опыта могу рекомендовать некоторые общие принципы стратегии тренировочного процесса, одновременного совершенствования скоростно-силовых качеств и выносливости, которые помогут снизить проявление эффекта интерференции.

  1. Если комбинированная тренировка (силы и выносливости) проводится два раза в неделю, то перерыв между ними должен быть не менее 72 часов.
  2. Если интервальная нагрузка проводится с интенсивностью более 80-90% VO2 , то силовая должна проводиться с весами, близкими к субмаксимальным и количеством повторение менее трёх в подходе.
  3. Силовая тренировка должна предшествовать работе на выносливость.

Удачи! Будьте здоровы, счастливы, сильны и выносливы!

Виды специальной выносливости, необходимые в спорте инвалидов с поражениями опорно-двигательного аппарата

Выносливость - это совокупность психических, морфологических и физиологических компонентов организма (инвалидов и лиц с ограниченны­ми возможностями), обеспечивающая его устойчивость к утомлению в ус­ловиях мышечной деятельности.

Развитие выносливости предъявляет повышение требования к сле­дующим функциональным системам и зависит от их состояния:

Функциональный потенциал ЦНС;

Функциональный потенциал опорно-двигательного аппарата;

Функциональный потенциал вегетативных функций (сердечно­сосудистой и дыхательной);

Наличие энергетических ресурсов в организме;

Личностно-психологические особенности (тип высшей нервной деятельности, свойства темперамента͵ характер, способность к воле­ вым усилиям);

Уровень освоения техники двигательного действия.

Измеряют выносливость временем, в течение которого выполня­ется двигательная работа:

Продолжительность выполнения упражнений циклического харак­ тера (бега, плавания, езды в коляске) без снижения скорости;

Продолжительность работы на велоэргометре при ручном или нож­ ном педалировании (для лиц с поражениями опорно-двигательного аппарата);

Продолжительность сохранения координационной стабильности движений при выполнении стандартной серийной нагрузки «до отказа»;

Физиологические и биохимические показатели энергетических ресурсов организма (максимальное потребление кислорода, содержа­ние молочной кислоты в крови и др.).

Выделяют общую и специальную выносливость. Общая выносли­вость - способность длительное время выполнять работу умеренной интенсивности, специальная - способность выполнять работу задан­ной интенсивности, преодолевать утомление в конкретном виде дея­тельности.

Общая выносливость необходима всœем инвалидам любого возраста͵ но способы ее развития регламентированы сохранностью двигательных функций. Считается, что любая двигательная деятельность (в отличие от покоя), связанная с напряжением сердечно-сосудистой и дыхатель­ной систем, дает свой вклад в развитие выносливости. Сохранные локо­моторные функции у лиц с нарушением слуха, зрения, речи, с легкой и умеренной умственной отсталостью, легкой формой ДЦП, инвали­дов с ампутацией сегментов верхних конечностей позволяют им ис­пользовать упражнения циклического характера (плавание, бег, пере­движение на коньках, лыжах, спортивные и подвижные игры) как наи­более эффективный способ развития аэробных возможностей. Инвали­ды с ампутацией нижних конечностей, тяжелыми формами ДЦП и умственной отсталости, с нарушениями функций спинного мозга не имеют столь широкого репертуара, а развитие выносливости достигает­ся главным образом передвижением в коляске, хотя не исключены та­кие виды, как плавание, ходьба на протезах, спортивные игры.

Для большинства инвалидов (исключая спортсменов) задача раз­вития выносливости ограничена рамками деятельности в зоне умерен­ной интенсивности и состоит в том, чтобы не избирательно воздей­ствовать на отдельные факторы выносливости, а создавать условия для повышения общего уровня работоспособности к широкому кругу ви­дов деятельности, требующих выносливости. Это предполагает систе­матическую адаптацию к разнообразным видам физических упражне­ний, выполнение которых сопровождается утомлением. Утомление тоже имеет определœенные ограничения. Рекомендованные для лиц с нару­шениями в развитии напряжения не должны превышать частоты сер­дечных сокращений свыше 150-160 уд./мин, что автоматически исклю­чает работу с максимальными и субмаксимальными нагрузками.

Достигаемый на этой основе базовый уровень развития общей вы­носливости предусматривается в обязательных программах по физичес­кому воспитанию во всœех образовательных (коррекционных) учрежде-

ниях. Средствами являются упражнения ритмики и ритмической гим­настики, легкой атлетики, лыжной подготовки, плавания, спортивных и подвижных игр на уроках физической культуры, а также в рекреатив­ных и спортивных занятиях.

При развитии выносливости используются: равномерный метод, реже переменный и повторный. К примеру, школьники с умственной отсталостью к окончанию 9-го класса должны пробегать дистанцию 300- 500 м в равномерном темпе, на лыжах 1 км и плавать на расстояние 25 метров. Повторный метод используется в беге на отрезках 20 м в младших классах и 40-50 м - в старших, девушки повторяют упраж­нение 5-6 раз, юноши 8-10 (Е.С. Черник, 1997). Приблизительно такие же величины нагрузки в школе выполняют дети других нозологических групп, причем главное внимание акцентируется на технике движений, коррекции нарушений и ритмичности дыхания без нормативных требо­ваний к скорости передвижения.

О функциональных возможностях детей с нарушениями в развитии можно судить по программам соревнований. К примеру, международная «Программа развития спортивных умений и навыков» (1993) для ум­ственно отсталых детей включает соревнования по лыжному спорту на дистанциях 10 м, 50 м, 100 м, 500 м, 1 км, 3 км, 5 км, 7,5 км и 10 км. Наиболее эффективным методом развития выносливости для них явля­ется игровой. Подвижные игры, проводимые в любое время года, вклю­чают самые разнообразные виды перемещений, ускорения, прыжки, эс­тафеты, переноску груза и т.п., естественным образом активизируют аэроб­ные процессы, при систематических воздействиях повышают уровень скоростных способностей и работоспособности, стимулируют положи­тельные эмоции. При этом практика показывает, что школьных занятий для развития выносливости явно недостаточно. Необходимы дополни­тельные формы двигательной активности (прогулки, походы, игры с мячом, катание на лыжах, коньках, санках, купание и плавание и др.), способные расширить диапазон адаптивных реакций ребенка.

В сфере адаптивной физической рекреации физическая нагрузка регулируется самими занимающимися. Систематические и эпизодичес­кие занятия, пешие или в коляске прогулки, гребля, езда на велосипе­де, дартс, бильярд, настольный теннис и др. носят оздоровительный характер и выступают как средство активного досуга и общения. Иногда эти занятия продолжаются 2-3 часа с естественными паузами для от­дыха. Их положительный эффект на развитие выносливости и общей работоспособности не вызывает сомнения. Величина воздействия на всœе системы организма, в том числе на дыхательную и сердечно-сосудис­тую, зависят от продолжительности занятия и интенсивности выполне­ния упражнений.

Общая выносливость составляет основу развития других физичес­ких способностей и является частью базовой подготовки спортсменов в адаптивном спорте. Средствами являются подводящие, соревнователь­ные упражнения. Ю.КХЛюбезнов с соавт. (1989) оптимальные режимы развития выносливости инвалидов с поражением функций спинного мозга предлагают определять в два этапа. На первом - проведение кон-

трольного тестирования езды в колясках с максимальной интенсивно­стью (в условиях соревнования) на дистанции 400 м с регистрацией времени, темпа и скорости передвижения. На втором этапе - определœе­ние оптимальной величины нагрузки при интенсивности, составляю­щей 90, 80, 70, 60% от скорости контрольного результата. При среднем максимальном результате 2 мин, скорости 200 м/мин и темпе 160 дви­жений в мин рекомендованы следующие оптимальные режимы для раз­вития общей выносливости:

Интенсивность 90% - 2 серии езды 2x400 м с интервалами 3 мин (общий объем 1600м), при темпе 144 движ./мин, скорости 180 м/мин;

Интенсивность 80% - 3 серии езды 2х400м с интервалами отдыха 2-3 мин (общий объем 2400м) при темпе 128 движ./мин и скорости 160 м/мин;

Интенсивность 70% - 5 серий езды 2x400 м с интервалом отдыха 3 мин (общий объем 4000 м), при темпе 112 дбиж./мин и скорости 140 м/мин;

Интенсивность 60% - 6 серий езды 2x400 м с интервалом отдыха 3 мин (общий объем 4800 м), при темпе 90 движ./мин и скорости 120 м/мин.

Такой подход позволяет планировать и контролировать длительный и постепенный процесс индивидуального развития выносливости ин­валидов и периодически вносить коррективы с учетом достигнутого эффекта. Наиболее эффективными для инвалидов с поражением опор­но-двигательного аппарата Е.Г.Григоренко, Б.В.Сермеев (1991) счита­ют упражнения, выполняемые с разной интенсивностью:

- для поддержания аэробной выносливости с ЧСС в границах 120-140 уд./мин;

- для повышенной аэробной выносливости с ЧСС в диапазоне 140-165 уд./мин;

- для максимального развития аэробной выносливости с ЧСС в пре­ делах 165-180 уд./мин.

Последние два режима нагрузки относятся к специальной вынос­ливости.

Специальная выносливость представляет сложную физическую спо­собность, которая определяется спецификой вида спорта͵ его коорди­национной структурой, продолжительностью и интенсивностью сорев­новательной деятельности, механизмами ее энергообеспечения, спо­собностью преодолевать утомление.

Физическая работа в разных видах адаптивного спорта осуществляется за счет разных источников энергообеспечения и определяется энергети­ческими возможностями спортсменов. Существуют три источника энерго­образования: алактатные анаэробные, обеспечивающие кратковременную работу от 15-30 с, лактатные анаэробные - от 30 с до 3-4 мин, аэроб­ные - от 2 мин до нескольких часов (В.Н. Платонов, 1987).

Продолжительность соревновательной деятельности в различных видах спорта определяет преимущественную мобилизацию тех или иных поставщиков энергии. Временные диапазоны энергообразования лежат в основе выбора методов развития специальной выносливости спорт­сменов-инвалидов с учетом их функциональных возможностей.

Процессы компенсации, сниженные функции нарушенных систем организма, особенности приспособительных реакций, гиперфункция отдельных мышечных групп влияют на структуру и особенности специ­альной выносливости, которая аккумулирует в себе всœе физические способности (силовые, скоростные, координационные), но в большей мере те, которые преобладают в данном виде деятельности и определя­ют конечный результат.

В одном случае крайне важно одноразовое проявление скоростных способностей (спринтерские дистанции в беге, плавании, гонках на велосипеде, в колясках); в другом - усилий максимальной мощности (армрестлинг, упражнения со штангой, прыжки, метание); в третьем -поддержание высокой скорости длительное время (биатлон, гонки на санях с коньками, лыже-санях, на колясках и др.), за счет силовой выносливости, где вся нагрузка падает на плечевой пояс. В игровых ви­дах (теннис, футбол на костылях при ампутации нижней конечности, гандбол, баскетбол в коляске и др.) требуется многократное выполне­ние ускорений, поворотов, маневрирования в соответствии с тактичес­кими действиями и проявлениями целого комплекса скоростных, ско-ростно-силовых, координационных способностей. Объединяющим при­знаком являются повышенные требования к координационным спо­собностям, так как при утомлении в силу различных «поломов» в организ­ме именно они подвержены сбою. У инвалидов с поражением опорно-двигательного аппарата основные трудности связаны с сохранением равновесия, прямолинœейности и симметричности движений, коорди­нации отдельных звенев тела. К примеру, пловец с усеченной нижней конечностью вынужден не только поддерживать максимальную скорость на дистанции, но и нивелировать колебания тела вокруг продольной оси в каждом гребковом цикле, корригировать усилиями рук асиммет­ричные движения ног, имеющих разную массу, обеспечивая прямоли­нейность движения и горизонтальное положение тела. Движения бас­кетболистов в колясках по своей координации намного сложнее, чем в обычном баскетболе. Инвалиды используют руки не только для манипу­ляции с мячом, но и виртуозного управления коляской с ускорения­ми, остановками, поворотами, тактическими действиями с мячом и без мяча, что требует проявления и координационных способностей.

В силу двигательных нарушений и даже исключения из движения отдельных сегментов тела (спинальные и ампутационные нарушения) физическая нагрузка падает на сохранные функции двигательного ап­парата͵ компенсирующие работу недостающих групп мышц. Движение охватывает не всœе мышечные группы, а только их часть. Делœение вынос­ливости на тотальную, проявляемую тогда, когда в работе активно уча­ствует свыше 2 / 3 всœех мышц, региональную - когда активно функциони­рует от "/ 3 до 2 / 3 мышечных групп, и локальную, в которой занято менее V, мышечных групп, актуально для лиц с нарушениями опорно-двига­тельного аппарата. К примеру, пловцы с нарушениями функций спин­ного мозга или двусторонней ампутацией нижних конечностей нахо­дятся в воде в вертикальном положении, преодолевая дистанцию за счет рук. Это означает, что работа носит локальный характер и связана

с крайне важностью развития силовой выносливости мышц рук и плече­вого пояса.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, уровень специальной выносливости спортсменов-инвалидов определяется не только степенью развития вегетативных функций, обеспечивающих движение, но и стабильностью координа­ционной выносливости, выступающей как фактор устойчивости про­тив утомления нервно-моторных функций управления движениями (Л.П. Матвеев, 1991).

Основные виды специальной выносливости, которые требуются для выполнения инвалидами разных видов соревновательной деятель­ности, - это координационная, скоростная, скоростно-силовая и си­ловая выносливость. В «чистом» виде они встречаются достаточно редко. При выполнении любого двигательного действия в той или иной мере принимают участие разные виды выносливости, а такой вид, как координацион­ная выносливость, реализуется в каждом из них. Координационная вы­носливость создает условия для выполнения скоростных действий, где требуется высокий темп и скорость (скоростная выносливость), упраж­нений с выраженными моментами силовых напряжений (силовая вы­носливость), упражнений, где одновременно проявляются и скорость, и мышечная сила (скоростно-силовая выносливость). Почти всœе виды спорта͵ рекомендованные для инвалидов, требуют не одного, а многих типов специальной выносливости (табл. 3).

Объективную основу их единства составляет общность факторов, определяющих выносливость разного типа, а также закономерности комплексного переноса тренированности, приобретаемой в процессе выполнения одних и тех же подготовительных упражнений, но с раз­ным целœевым назначением.

Развитие всœех видов выносливости осуществляется путем варьиро­вания величины параметров задаваемой нагрузки: продолжительности, интенсивности и мощности выполняемых упражнений, веса отягоще­ний, количества подходов в серии и количества серий, длительности и характера отдыха (если он есть) между упражнениями и сериями уп­ражнений. Для развития специальной выносливости используются те же методы, что и для здоровых спортсменов, так как закономерности адаптационных процессов для всœех едины, но в работе с инвалидами учитывается реальные функциональные возможности, разрешающие индивидуальные способности организма спортсмена, состояние сохран­ных функций, медицинские показания и противопоказания.

Скоростная выносливость необходима практически во всœех цикли­ческих видах спорта - от коротких до марафонских дистанций, и это регламентирует выбор продолжительности и интенсивности упражне­ний в процессе тренировки. Οʜᴎ могут варьировать от 3-4 с с макси­мальной интенсивностью до нескольких минут при условии, что ско­рость преодоления тренировочных отрезков дистанции на 6-8% выше соревновательной, а интервалы отдыха полностью обеспечивают вос­становление. В игровых видах спорта скоростная выносливость развива­ется преимущественно средствами специально-подготовленных упраж­нений продолжительностью 5-10 с, выполняемых с максимальной ин-

Таблица 3

№ п/п Виды спорта Скоростная выносли­вое!ь Скоростно-силовая вы­носливость Силовая вы­носливость Координаци­онная вынос­ливость
Армрестлинг +
Баскетбол в колясках + + +
Т Боулинг + +
+ +
+
+ + + +
Велосипедный спорт + + +
+ +
Ч Волейбол сидя + + +
Гандбол + + +
+ +
1? + + +
Гонки на санях с конь­ками + + +
+
И Конный спорт + +
Легкая атлетика: бег + +
гонки в колясках + +
слалом в колясках + + +
+ +
метание + +
Лыжные гонки + + +
IX Лыже-сани + +
Моно-ски + +
7,0 Настольный теннис + + +
Плавание + + + +
Пауэрлифтинг +
Стрельба из лука + +
Стрельба пулевая + +
Спортивное ориенти­рование + + +
Сит-ски + +
Спортивные танцы +
Теннис + + +
Фехтование + +
Футбол + + +
Хоккей на санях с коньками + + + +

тенсивностью. Основные методы развития скоростной выносливости -переменный, повторный, интервальный, игровой, соревновательный.

Скоростно-силовая выносливость необходима в видах спорта͵ где пре­одолевается внешнее сопротивление за счет оптимальных мышечных уси­лий. К примеру, при передвижении на лыже-санях крайне важно в каждом цикле движений не только перемещать собственную массу тела, но и со­общать ей дополнительное ускорение сотни раз во время прохождения дистанции, используя скольжение. При этом ни сила, ни скорость не дос­тигают максимальных величин в каждом движении. Средствами трениров­ки служат динамические упражнения с отягощениями, выполняемые се­риями, от 30 до 70% от максимальных силовых способностей человека путем многократных повторений «до отказа». При этом развивается и вы­носливость, и сила. В видах спорта с ациклической структурой движений (прыжки, метание, гольф, теннис, волейбол сидя и стоя и др.) скорост-но-силовые способности проявляются в мощности усилий, ĸᴏᴛᴏᴩᴏᴇ дос­тигается в короткий промежуток времени. Для развития этой способности используются силовые упражнения с небольшими отягощениями, не ис­кажающими технику двигательных действий. Основные методы развития скоростно-силовой выносливости - метод повторных и метод динамичес­ких усилий.

Силовая выносливость чаще всœего проявляется в упражнениях, требую­щих абсолютной силы, к примеру, в армрестлинге и пауэрлифтинге. Основ­ными методами развития абсолютной силы являются метод повторных уси­лий: 3 упражнения с максимальным отягощением, повторяемые 2-3 сери­ями с полным интервалом отдыха; метод изометрических напряжений с максимальными усилиями в статическом режиме в течение 6-8 с, а также методы атлетической гимнастики - «фляшинг», «крампинг», «читгинг». Такой вид силовой выносливости, приобретаемый длительной тренировкой, не имеет переноса на динамические упражнения и используется в узкой спортив­ной специализации, но чаще - как метод коррекции телосложения.

Есть виды упражнений в отдельных видах спорта͵ где необходима максимальная динамическая сила - плавание одними руками при па­раличе или ампутации нижних конечностей, скольжение в подъем на лыже-санях, осуществляемое исключительно с помощью рук.

Такие виды спорта͵ как горнолыжный, стрельба, конный, гонки в колясках и др., требуют удержания вертикальной позы стоя или сидя, иногда в течение длительного времени, ĸᴏᴛᴏᴩᴏᴇ зависит не только от состояния вестибулярного аппарата͵ но и силы мышц туловища. С це­лью укрепления силы мышц плечевого пояса и туловища в практике применяются силовые упражнения на тренажерах, а также упражнения со штангой весом 65-90% от максимально возможного.

1. Дайте определœение выносливости как виду физических способно­стей.

2. К каким функциональным системам организма человека вынос­ ливость предъявляет повышенные требования?

3. Дайте характеристику общей выносливости.

4. Особенности развития общей выносливости.

5. Специальная выносливость и способы ее развития.

6. Раскройте основные виды специальной выносливости.

______________ 20.6. Развитие гибкости__________________

В отличие от базовых двигательных способностей (силовых, ско­ростных и др.), являющихся непосредственными факторами моторных действий, гибкость представляет собой одну из главных предпосылок движений и необходимых взаиморасположений звеньев тела.

Гибкость - комплекс психологических, морфологических и физиоло­гических компонентов организма (инвалидов и лиц с ограниченными воз­можностями), обеспечивающий способность выполнять движения с макси­мальной амплитудой.

Этот комплекс включает следующие факторы:

Морфологическое и функциональное состояние центральной и периферической нервной системы (нервная регуляция тонуса мышц, уровень межмышечной координации);

Морфологическое и функциональное состояние суставов (сустав­ной поверхности, суставных капсул, внесуставных связок, наличие выраженной или приобретенной тугоподвижности);

Психологическое состояние (порог болевых ощущений, способ­ность к волевым усилиям).

Педагогическими задачами при направленном развитии гибкости являются:

1) обеспечить развитие гибкости в той мере, в какой это необходи­ мо для выполнения движений с полной амплитудой, без ущерба для нормального функционирования опорно-двигательного аппарата;

2) предотвратить, насколько это возможно, утрату достигнутого уровня гибкости, минимизировать ее регресс.

3) обеспечить восстановление гибкости, утраченной в результате заболеваний, травм и других причин.

Выделяют активную и пассивную гибкость. Активная гибкость - спо­собность достигать максимальной амплитуды движений за счет работы мышц, проходящих через сустав, пассивная - за счет действия посторонних сил.

В естественных условиях инвалид использует лишь сравнительно небольшую часть анатомической подвижности в суставах, сохраняя ог­ромный резерв пассивной гибкости.

Наиболее продуктивным периодом развития пассивной гибкости является возраст 9-10 лет, активной - 10-14 лет. В силу естественных возрастных изменений структуры мышц уже к 20 годам амплитуда дви­жений заметно падает. По этой причине младший и средний школьный возраст оказывается самым плодотворным для развития гибкости.

Дети с нарушениями в развитии отстают по уровню гибкости от своих здоровых сверстников: умственно отсталые на 10-20% (А.А. Дмит­риев, 1991), глухие на 15-20% (В.Л. Страковская, 1987), слепые и слабослышащие младшие школьники на 25% (Л.Н. Ростомашвили 1999).

Значительные инволюционные изменения гибкости наступают в пожилом возрасте в связи с ухудшением эластично-упругих свойств мышц и связок. Тем не менее регрессивным тенденциям можно проти­водействовать путем специальных упражнений.

При развитии гибкости крайне важно учитывать некоторые общие закономерности:

1. Развитие гибкости тесно связано с развитием мышечной силы. Но гипертрофия мышц, вызываемая массированным применением си­ ловых упражнений, может привести к ограничению размаха движений. С другой стороны, форсированное развитие гибкости без соразмерного укрепления мышечно-связочного аппарата может вызвать «разболтан­ ность» в суставах, перерастяжения, нарушения осанки. Отсюда вытека­ ет крайне важность оптимального сочетания упражнений, направленных на развитие гибкости и мышечной силы. При таком подходе за счет предварительного растягивания мышц и увеличения мощности усилий создаются предпосылки улучшения координационной структуры дви­ жений, быстроты мышечных переключений (Л.П. Матвеев, 1991).

2. Для развития активной гибкости наряду с растягивающими уп­ ражнениями, которые выполняются за счет мышечных усилий, эффек­ тивны и силовые упражнения динамического и статического характера, а также медленные динамические упражнения с удержанием статичес­ ких поз в конечной точке амплитуды. Чередование их позволяет обеспе­ чить большую амплитуду при выполнении большинства упражнений (В.Н. Платонов, 1987).

3. Активная гибкость развивается в 1,5-2 раза медленнее, чем пас­ сивная. Разное время требуется на развитие подвижности в различных суставах. Быстрее повышается подвижность в плечевых, локтевых, лу- чезапястных суставах, медленнее - в тазобедренном и суставах позво­ ночного столба. Время достижения положительного эффекта может из­ меняться в зависимости от структуры сустава и мышечной ткани, воз­ раста и имеющихся двигательных нарушений (Б.В. Сермеев, 1970).

4. Развитие гибкости при максимальной амплитуде движений связа­ но с насильственным растягиванием мышечно-связочного аппарата͵ при котором преодолеваются некоторые болевые ощущения. Во избе­ жание микротравм крайне важно предварительное разогревание мышц с помощью разминки, самомассажа, теплого тренировочного костюма, в домашних условиях это может быть 10-минутная ванна в 40° воде (Н.Г. Озолин, 1988).

Принято различать гибкость общую и специальную. В адаптивной физической культуре общая гибкость реализуется во всœе возрастные периоды жизни и состоит во всœестороннем поступательном ее разви­тии, гарантирующем достаточно полную амплитуду в различных видах движений.

Специальная гибкость реализуется в двух направлениях.

Первое - в адаптивном спорте, где повышение подвижности в суста­вах достигается подбором родственных по структуре упражнений, воздей­ствующих на суставы и мышцы, определяющие результат в избранном виде спорта (к примеру, в плавание кролем - плечевой и голеностопный суставы, брассом - тазобедренный, коленный и голеностопный).

Для развития гибкости в зависимости от режима работы мышц ис­пользуются следующие виды упражнений:

а)динамические активные и пассивные;

б)статические активные и пассивные;

в)комбинированные.

Динамические активные упражнения включают маховые, пружи­нистые, прыжковые упражнения, со жгутами и амортизаторами и т.п.

Динамические пассивные упражнения включают упражнения с до­полнительной опорой, с помощью партнера и преодолением внешних сопротивлений.

Статические активные упражнения включают удержания растяну­тых мышц, осуществляющих движение.

Статические пассивные упражнения - те же, но удержание поло­жения тела осуществляется с помощью внешних сил - отягощения, партнера.

Комбинированные упражнения основаны на предварительном пас­сивном растяжении мышц с последующим активным напряжением, расслаблением и растягиванием.

В практике адаптивной физической культуры эти разновидности упражнений трансформируются в конкретные упражнения целœевого назначения; почти всœе упражнения предваряются массажем или само­массажем:

для пальцев рук: массаж, разгибание пальцев надавливанием другой руки - сначала легким, затем сильными пружинистыми движениями и статическом удержанием в разогнутом положении;

для запястья: массаж, сгибание, разгибание, вращение, статичес­кое удержание в разогнутом положении за счет надавливания другой рукой или упором в неподвижный предмет (пол, стену);

для плечевых суставов: вращения, маховые упражнения в разных направлениях и плоскостях, висы на кольцах, наклоны вперед хватом за рейку гимнастической стенки; самостоятельно или с партнером: пру­жинные наклоны, отведения рук, выкруты гимнастической палки;

для туловища: прогибание назад в мост у опоры, со страховкой, наклоны назад, стоя на коленях, наклоны вперед прогнувшись, волно­образные движения вперед, назад, в стороны, наклоны повороты, вра­щения туловища;

для голеностопных суставов: массаж, оттягивание носков, подошвен­ное сгибание-разгибание, сед на пятках с оттянутыми расслабленны­ми носками, ходьба на носках, на пятках, на наружном и внутреннем своде;

для тазобедренных суставов:_глу6окке приседания на полной ступне -в положении ноги врозь, выпады вперед и в стороны; наклоны вперед из

положения ноги врозь, вместе, стоя на гимнастической скамейке; взмахи ногами вперед, назад, в сторону стоя у опоры; то же с отягощением на голень 1 кг, стоя у опоры поднимание ноги вперед, в сторону, назад с помощью партнера и самостоятельно; то же, но медленно с фиксирова­нием верхней точки амплитуды, с отягощением.

Степень их использования, а также дозировка определяется потреб­ностью либо в сохранения гибкости на достигнутом уровне, либо ее дальнейшего развития и совершенствования.

Второе направление реализуется в процессе восстановления под­вижности суставов средствами ЛФК. Оно достаточно полно изучено, имеет свои двигательные режимы, этапы, технические приспособле­ния, различные технологии. К примеру, А.Ф.Каптелин (1995) при по­ражении опорно-двигательного аппарата для восстановления активной гибкости рекомендует использовать облегченные условия водной среды. Установлено, что при развитии контрактуры дозированное растягива­ние мышечно-суставно-капсульного аппарата в воде происходит более успешно, чем в обычных условиях.

В.Г. Григоренко, Б.В. Сермеев (1991) в развитии гибкости у инвали­дов с нарушениями функций спинного мозга выделяют 3 этапа.

а) Этап суставной гимнастики - характеризуется тем, что ведущей задачей является не только повышение общего уровня развития актив­ ной и пассивной подвижности в суставах, но и укрепление самих суста­ вов, а также функциональная подготовка мышечно-связочного аппара­ та с целью улучшения эластичных свойств и создания прочности мышц и связок. Этот этап связан с изучением индивидуальных возможностей инвалидов.

б) Этап специального развития подвижности в суставах. Ведущая за­ дача - развитие максимальной амплитуды в тех движениях, которые способствуют быстрому и качественному овладению базовыми двига­ тельными действиями, необходимыми в бытовой, производственной, реабилитационной и спортивной практике инвалидов. Методика разви­ тия гибкости на этом этапе должна обеспечивать оптимальное сочета­ ние упражнений на растягивание и силу. Важно не только максимально развить силу и подвижность в суставах на основе дифференцированного подхода, но и привести их в соответствие между собой.

в) Этап поддержания подвижности в суставах на достигнутом уров­ не характеризуется крайне важностью ежедневного выполнения упраж­ нений на растягивание с оптимальным дозированием нагрузки. Эта за­ дача эффективно решается путем включения следующих упражнений:

Простые движения, выполняемые с максимальной амплитудой; -упражнения с использованием дополнительного внешнего усилия; -упражнения, выполняемые в статическом режиме, при которых

сохраняется неподвижное положение, но с максимальным отведением;

Сгибание и разгибание различных частей тела; -упражнения на расслабление, способствующие улучшению как

пассивной, так и активной подвижности в суставах.

локальный метод, включающий специальные упражнения в опти­мальном режиме нагрузки на конкретный сустав опорно-двигательно­го аппарата;

интегральный метод, включающий специальные упражнения, по­добранные на основе координационной структуры, крайне важной амп­литуды и других характеристик движения, нацелœен на эффект суммар­ного проявления гибкости в разных суставах.

Контрольные вопросы и задания

1. Дайте определœение гибкости.

2. Какие факторы обеспечивают способность выполнять движения с максимальной амплитудой?

3. Перечислите основные закономерности развития гибкости.

4. Какие упражнения бывают использованы для развития гибко­ сти пальцев рук, запястья, плечевых суставов, туловища (позвоночни­ ка), тазобедренных и голеностопных суставов?

5. Какие этапы развития гибкости у инвалидов выделяют В.Г. Гри- горенко, Б.В. Сермеев?

________ 20.7. Развитие координационных способностей_________

Когда говорят о координационных способностях человека, то име­ют в виду согласованные, целœесообразные, координированные движе­ния и способность управлять ими.

Природной основой координационных способностей являются свой­ства нервной системы (сила, подвижность, уравновешенность нервных процессов), индивидуальные варианты строения коры головного моз­га, степень зрелости ее отдельных областей, уровень развития и сохран­ность сенсорных систем (зрения, слуха и др.), продуктивность психи­ческих процессов (ощущений, восприятия, памяти, мышления), тем­перамент, характер, способность регулировать эмоциональное состоя­ние. Это означает, что координационные способности определяются теми биологическими и психическими функциями, которые у детей с различными нарушениями имеют дефектную основу. Эти нарушения ведут к рассогласованию различных функций организма, и в первую очередь между функциями двигательного аппарата и деятельностью дру­гих систем, обеспечивающих работу мышц (В.С. Фарфель, 1975; Е.П. Ильин, 1983; А.С. Солодков, 1998), что затрудняет освоение сложноко-ординационных двигательных действий, а следовательно, и координа­ционных способностей.

Н.П.Вайзманом (1997) выдвинуто предположение о том, что при неосложненной форме умственной отсталости нарушения сложных дви­гательных актов, требующих тонкой моторики, определяются теми же

механизмами, что и интеллектуальный дефект, ᴛ.ᴇ. нарушениями ана-литико-синтетической деятельности коры головного мозга.

Дети с сенсорной недостаточностью медленнее осваивают сложные движения, так как многие частные проявления координационных спо­собностей опираются на зрительную, слуховую, вестибулярную аффе-рентацию.

Изменение опорно-двигательного аппарата при тренировке - раздел Спорт, Влияние физических нагрузок на опорно-двигательный аппарат на примере плавания Изменение Опорно-Двигательного Аппарата При Тренировке. Скелетная Мускулатура...

Изменение опорно-двигательного аппарата при тренировке. Скелетная мускулатура – главный аппарат, при помощи которого совершаются физические упражнения. Хорошо развитая мускулатура является надежной опорой для скелета. Например, при патологических искривлениях позвоночника, деформациях грудной клетки (а причиной тому бывает слабость мышц спины и плечевого пояса) затрудняется работа легких и сердца, ухудшается кровоснабжение мозга и т. д. Тренированные мышцы спины укрепляют позвоночный столб, разгружают его, беря часть нагрузки на себя, предотвращают "выпадение" межпозвоночных дисков, соскальзывание позвонков.

Физические упражнения действуют на организм всесторонне. Так, под влиянием физических упражнений происходят значительные изменения в мышцах.

Если мышцы обречены на длительный покой, они начинают слабеть, становятся дряблыми, уменьшаются в объеме. Систематические же занятия физическими упражнениями способствуют их укреплению. При этом рост мышц происходит не за счет увеличения их длины, а за счет утолщения мышечных волокон. Сила мышц зависит не только от их объема, но и от силы нервных импульсов, поступающих в мышцы из центральной нервной системы. У тренированного, постоянно занимающегося физическими упражнениями человека, эти импульсы заставляют сокращаться мышцы с большей силой, чем у нетренированного.

Под влиянием физической нагрузки мышцы не только лучше растягиваются, но и становятся более твердыми. Твердость мышц объясняется, с одной стороны, разрастанием протоплазмы мышечных клеток и межклеточной соединительной ткани, а с другой стороны – состоянием тонуса мышц. Занятия физическими упражнениями способствуют лучшему питанию и кровоснабжению мышц. Известно, что при физическом напряжении не только расширяется просвет бесчисленных мельчайших сосудов (капилляров), пронизывающих мышцы, но и увеличивается их количество. Так, в мышцах людей, занимающихся физической культурой и спортом, количество капилляров значительно больше, чем у нетренированных, а следовательно, у них кровообращение в тканях и головном мозге лучше.

Еще И. М. Сеченов – известный русский физиолог – указывал на значение мышечных движений для развития деятельности мозга. Как говорилось выше, под воздействием физических нагрузок развиваются такие качества как сила, быстрота, выносливость.

Лучше и быстрее других качеств растет сила. При этом мышечные волокна увеличиваются в поперечнике, в них в большом количестве накапливаются энергетические вещества и белки, мышечная масса растет. Регулярные физические упражнения с отягощением (занятия с гантелями, штангой, физический труд, связанный с подъемом тяжестей) достаточно быстро увеличивает динамическую силу. Причем сила хорошо развивается не только в молодом возрасте, и пожилые люди имеют большую способность к ее развитию.

Физические тренировки также способствуют развитию и укреплению костей, сухожилий и связок. Кости становятся более прочными и массивными, сухожилия и связки крепкими и эластичными. Толщина трубчатых костей возрастает за счет новых наслоений костной ткани, вырабатываемой надкостницей, продукция которой увеличивается с ростом физической нагрузки. В костях накапливается больше солей кальция, фосфора, питательных веществ.

А ведь чем более прочность скелета, тем надежнее защищены внутренние органы от внешних повреждений. Увеличивающаяся способность мышц к растяжению и возросшая эластичность связок совершенствуют движения, увеличивают их амплитуду, расширяют возможности адаптации человека к различной физической работе. Физическая работа делится на два вида: динамическую и статическую. Динамическая работа выпол­няется тогда, когда в физическом смысле происхо­дит преодоление сопротивления на определенном расстоянии.

В этом случае (например, при езде на велосипеде, подъеме на лестницу или в гору) работа может быть выражена в физических единицах (1 Вт = 1 Дж/с = 1 Нм/с). При положительной ди­намической работе мускулатура действует как «дви­гатель», а при отрицательной динамической работе она играет роль «тормоза» (например, при спуске с горы). Статическая работа производится при изо­метрическом мышечном сокращении. Так как при этом не преодолевается никакое расстояние, в физи­ческом смысле это не работа; тем не менее, организм реагирует на нагрузку физиологически напряженн­ей. Проделанная работа в этом случае измеряется как произведение силы и времени.

Физическая активность вызывает немедленные реакции различных систем органов, включая мы­шечную, сердечно-сосудистую и дыхательную. Эти быстрые адаптационные сдвиги отличаются от адап­тации, развивающейся в течение более или менее длительного срока, например в результате трениро­вок. Величина быстрых реакций служит, как правило, непосредственной мерой напряжения.

Немедленные реакции обусловлены изменением большого количества параметров, в частности, изменением мышечного кровоснабжения. В покое кровоток в мыш­це составляет 20- 40 мл - мин кг - При экст­ремальных физических нагрузках эта величина су­щественно возрастает, достигая макси­мума, равного 1,3 л-мин - 1 кг - 1 у нетренирован­ных лиц и 1,8 л-мин -кг у лиц, тренированных на выносливость. Кровоток усиливается не мгно­венно с началом работы, а постепенно, в течение не менее 20-30 с; этого времени достаточно, чтобы обеспечить кровоток, необходимый для выполнения легкой работы.

При тяжелой динамической работе, однако, потребность в кислороде не может быть полностью удовлетворена, поэтому возрастает доля энергии, получаемой за счет анаэробного метабо­лизма. Обмен веществ в мышце. При легкой работе получение энергии происходит по анаэробному пути только в течение короткого переходного периода после начала работы; в дальнейшем метаболизм осуществляется полностью за счет аэробных реакций с использованием в качестве субстратов глюкозы, а также жирных кислот и глицерола.

В отличие от этого во время тяжелой работы получение энергии частично обеспечивается анаэробными процессами. Сдвиг в сторону анаэроб­ного метаболизма (приводящего к образованию молочной кислоты) происходит в основном из-за недостаточности артериального кровотока в мыш­це, или артериальной гипоксии. Кроме этих «узких мест» в процессах энергообеспечения и тех, что временно возникают сразу же после начала работы, при экстремальных нагрузках образуют­ся «узкие места», связанные с активностью фермен­тов на различных этапах метаболизма.

При накоп­лении большого количества молочной кислоты на­ступает мышечное утомление. После начала работы требуется некоторое время для увеличения интенсивности аэробных энергети­ческих процессов в мышце. В этот период дефицит энергии компенсируется за счет легкодоступных анаэробных энергетических резервов (АТФ и креатин-фосфата). Количество макроэргических фосфатов невелико по сравнению с запасами гликогена, однако они незаменимы как в течение указанного периода, так и для обеспечения энергией при кратковременных перегрузках во время выпол­нения работы.

Во время динамической работы происходят су­щественные адаптационные сдвиги в работе сердеч­но-сосудистой системы. Сердечный выброс и кровоток в работающей мышце возрастают, так что кровоснабжение более полно удовлетворяет по­вышенную потребность в кислороде, а образующее­ся в мышце тепло отводится в те участки организма, где происходит теплоотдача.

Во время легкой работы с постоянной нагрузкой частота сокращений сердца возрастает в течение первых 5-10 мин и достигает постоянного уровня; это стационарное состояние сохраняется до завершения работы даже в течение нескольких часов. Во время тяжелой работы, выполняемой с постоянным усили­ем, такое стабильное состояние не достигается; ча­стота сокращений сердца увеличивается по мере утомления до максимума, величина которого не­одинакова у отдельных лиц (подъем, обусловленный утомлением). Даже после завершения работы частота сердеч­ных сокращений изменяется в зависимости от имев­шего место напряжения.

После легкой работы она возвращается к первоначальному уров­ню в течение 3-5 мин; после тяжелой работы период восстановления значительно дольше – при чрезвы­чайно тяжелых нагрузках он достигает нескольких часов. Другим критерием может служить общее число пульсовых ударов свыше начальной частоты пульса в течение периода вос­становления; этот показатель служит мерой мышечно­го утомления и, следовательно, отражает нагрузку, потребовавшуюся для выполнения предшествую­щей работы.

Ударный объем сердца в начале работы возрастает лишь на 20- 30%, а после этого сохраняется на постоянном уровне. Он немного падает лишь в случае максимального напряжения, когда частота сокращений сердца столь велика, что при каждом сокращении сердце не успевает целиком заполниться кровью.

Как у здорового спортсмена с хорошо тренированным сердцем, так и у человека, не занимающегося спортом, сердечный выброс и частота сокращений сердца при работе изменяются приблизительно пропорционально друг другу, что обусловлено этим относительным по­стоянством ударного объема. При динамической работе кровяное артериальное давление изменяется как функция выполняемой работы. Систо­лическое давление увеличивается почти пропорци­онально выполняемой нагрузке, достигая приблизи­тельно 220 мм рт. ст. при нагрузке 200 Вт. Диастолическое давление изменяется лишь незначи­тельно, чаще в сторону снижения.

В системе кровообращения, функционирующей под низким давлением (например, в правом предсердии) давление крови во время работы увеличивается мало; отчетливое его повышение в этом участке является патологией (например, при сердечной не­достаточности). Потребление организмом кислорода возрастает пропорционально величине и эффек­тивности затрачиваемых усилий. При легкой работе достигается стационарное состояние, когда потреб­ление кислорода и его утилизация эквивалентны, но это происходит лишь по прошествии 3-5 мин, в течение которых кровоток и обмен ве­ществ в мышце приспосабливаются к новым требо­ваниям.

До тех пор пока не будет достигнуто стационарного состояния, мышца зависит от неболь­шого кислородного резерва, который обеспечивается 02, связанным с миоглобином, и от способ­ности извлекать больше кислорода из крови. При тяжелой мышечной работе, даже если она выполня­ется с постоянным усилием, стационарное состояние не наступает; как и частота сокращений сердца, потребление кислорода постоянно по­вышается, достигая максимума.

С началом работы потреб­ность в энергии увеличивается мгновенно, однако для приспособления кровотока и аэробного обмена требуется некоторое время; таким образом, возни­кает кислородный долг. При легкой рабо­те величина кислородного долга остается постоян­ной после достижения стационарного состояния, однако при тяжелой работе она нарастает до самого окончания работы.

По окончании работы, особенно в первые несколько минут, скорость по­требления кислорода остается выше уровня покоя происходит «выплата» кислородного долга. Однако этот термин не точен, так как увеличение потребления кислорода после завершения работы не отражает непосредственно процессы восполнения запасов 02 в мышце, а происходит и за счет влияния других факторов, таких, как увеличение темпера­туры тела и дыхательная работа, изменение мышеч­ного тонуса и пополнение запасов кислорода в ор­ганизме.

Таким образом, долг, который будет возвращен, по величине больше, чем возникший во время самой работы. После легкой работы величина кислородного долга достигает 4 л, а после тяжелой может доходить до 20 л. Во время легкой динамической работы минутный объем дыхания, как и сердечный выброс, увеличивается пропорционально потреблению кислорода. Это увеличение возникает в результате нарастания дыхательного объема и частоты дыхания.

Во время и после динамической работы кровь претерпевает существенные изменения. По ним лишь изредка можно действительно оценить степень физического напряжения, но особое значение их состоит в том, что они служат источниками ошибок при лабораторной диагностике. Во время легкой физиче­ской работы у здорового человека выявляются лишь незначительные изменения в парциальном давлении СО2 и О2 в артериальной крови. Тяжелая работа вызывает более существенные изменения. Наибольшие отклонения от уровня покоя составляют 8% для артериального давления О2, и 10% - для давления СО2. Насыщение кислородом смешанной венозной кро­ви падает с ростом напряжения; соответственно этому артериовенозная разница по кислороду увеличивается от значения, приблизи­тельно равного 0,05 (уровень покоя), до 0,14 у не­тренированных и 0,17 у тренированных лиц. Это увеличение обусловлено повышенным извлечением кислорода из крови в работающей мышце.

При физической работе показа­тель гематокрита увеличивается как в результате снижения объема плазмы (в связи с усиленной ка­пиллярной фильтрацией), так и за счет поступления эритроцитов из мест их образования (при этом увеличивается доля незрелых форм). Отмечено так­же нарастание числа лейкоцитов (рабочий лейкоци­тоз). Отмечено, что число лейкоцитов в крови бегунов на длинные дистан­ции увеличивается пропорционально длительности бега на 5000-15000 клеток/мкл в зависимости от работоспособно­сти (меньше у лиц с высокой работоспособностью). Увеличение происходит преимущественно за счет возрас­тания количества нейтрофильных гранулоцитов, так что при этом численное соотношение клеток разных типов меняется. Кроме того, пропорционально интенсивности работы увеличивается число тромбоцитов.

Легкая фи­зическая работа не влияет на кислотно-щелочное равновесие, так как все избыточное количество об­разующейся углекислоты выделяется через легкие.

Во время тяжелой работы развивается метаболический ацидоз, степень которого пропорциональна скорости образования лактата; частично он компен­сируется за счет дыхания (снижение артериального рСО2). Уро­вень глюкозы в артериальной крови у здорового человека мало изменяется во время работы.

Только при тяжелой и длительной работе происходит паде­ние концентрации глюкозы в артериальной крови, что указывает на приближающееся истощение. Вме­сте с тем концентрация лактата в крови варьирует в широких пределах в зависимости от степени на­пряжения и длительности работы – соответ­ственно скорости образования лактата в мышце, функционирующей в анаэробных условиях, и скорости его элиминации. Лактат разрушается или под­вергается превращениям в неработающих скелетных мышцах, жировой ткани, печени, почках и миокар­де. В условиях покоя концентрация лактата в арте­риальной крови составляет приблизительно 1 ммоль/л; при тяжелой работе длительностью око­ло получаса или при крайне тяжелых кратковремен­ных нагрузках с минутными интервалами могут быть достигнута максимального уровня, превышаю­щая 15 моль/л. При тяжелой длительной работе концентрация лактата сначала увеличивается, а за­тем падает. Если рацион богат углеводами, концентрации свободных жирных кислот и глицерола мало изме­няются под влиянием работы, так как секреция инсулина, обусловленная потреблением углеводов, тормозит липолиз.

Однако при обычном рационе тяжелая длительная работа сопровождает­ся увеличением концентраций свободных жирных кислот и глицерола в крови в 4 или более раз. Терморегуляция.

Потоотделение обычно счита­ется признаком тяжелой работы. Начало заметного потоотделения, однако, зависит не только от тя­жести работы, но и от условий окружающей среды.

Секреция пота начинается тогда, когда происходит превышение нейтральной температуры по причине либо усиленной теплопродукции во время мышечной работы, либо недостаточной теплоотдачи вследствие высокой температуры или влажности окружающей среды, несоответствующей одежды, отсутствия движения воздуха (конвекции) или, наконец, по причине нагревания тела избыточ­ным тепловым излучением (например, в литейном цехе). Во время и после физической работы концентрация многих гормонов в крови изменяется.

В большинстве случаев этот эффект неспецифический, либо недостаточно понятный. Выделяется повышенное количество адреналина, норадреналина. Через 2 мин после начала работы происходит усиление секреции аденогипофизом АКТГ, который стимулирует выделение кротикостероидов из коркового вещества надпочечников. Концентрация инсулина несколько снижается во время работы, уровень же глюкагона может, как повышаться, так и снижаться.

Вообще, систематические занятия физкультурой приводят к адаптации человеческого организма к выполняемой физической работе. В основе адаптации лежат изменения мышечных тканей и различных органов в результате тренировок. Все эти изменения определяют тренировочные эффекты. Они проявляются в улучшении разнообразных функций организма и повышении физической подготовленности. При анализе факторов, определяющих физические тренировочные эффекты упражнений можно выделить такие аспекты: · · · · · Последние два аспекта наиболее важны в спортивной тренировке.

Систематическое выполнение определенного рода физических упражнений вызывает следующие основные положительные функциональные эффекты: · · Первый эффект определяется ростом максимальных показателей при выполнении предельных тестов. Они отражают текущие максимальные возможности организма, существенные для данного вида упражнений.

Например, об эффекте тренировки выносливости говорит повышение максимальных возможностей в усвоении кислорода, максимального потребления кислорода и продолжительности мышечной работы на выносливость. Второй эффект проявляется в уменьшении функциональных сдвигов в деятельности других органов и систем организма при выполнении определенной работы. Так, при выполнении одинаковой нагрузки у тренированного и нетренированного наблюдаются более низкие показатели для последнего. Для тренированного же человека будет наблюдаться более низкие функциональные изменения в частоте сердечных сокращений, дыхания или потребления энергии.

В основе этих положительных эффектов лежат: · · Одним из основных вопросов при занятии физической подготовкой является выбор соответствующих, оптимальных нагрузок. Они могут определяться следующими факторами: · · · существующем уровне. · Как правило, не возникает серьезных проблем с выбором нагрузок во втором и третьем случаях. Сложнее обстоит дело с выбором нагрузок в первом случае, что и составляет основное содержание лечебной физической культуры.

В последнем случае повышение функциональных возможностей отдельных органов и всего организма, т.е. достижение тренировочного эффекта, достигается в том случае, если систематические тренирующие нагрузки достаточно значительны, достигают или превышают в процессе тренировки некоторую пороговую нагрузку. Такая пороговая тренирующая нагрузка должна превышать повседневную нагрузку. Принципом пороговых нагрузок называют принципом прогрессивной сверх нагрузки.

Основным правилом в выборе пороговых нагрузок заключается в том, что они должны соответствовать текущим функциональным возможностям данного человека. Так, одна и та же нагрузка может быть эффективной для малотренированного человека и совсем неэффективной для нетренированного человека. Следовательно, принцип индивидуализации в значительной мере опирается на принцип пороговых нагрузок. Из него следует, что при определении тренировочных нагрузок как тренер - преподаватель, так и сам тренирующийся должны иметь достаточное представление о функциональных возможностях своего организма.

Принцип постепенности в повышении нагрузок также есть следствие физиологического принципа пороговых нагрузок, которые должны постепенно возрастать с ростом тренированности. В зависимости от целей тренировки и личных способностей человека физические нагрузки должны иметь разную степень. Неодинаковые пороговые нагрузки применяются для повышения или поддержания уровня существующих функциональных возможностей.

Основными параметрами физической нагрузки являются ее интенсивность, длительность и частота, которые вместе определяют объем тренировочной нагрузки. Каждый из этих параметров играет самостоятельную роль в определении тренировочной эффективности, однако не менее важны их взаимосвязь и взаимное влияние. Важнейший фактор, влияющий на тренировочную эффективность - интенсивность нагрузки. При учете этого параметра и начального уровня функциональной подготовленности влияние длительности и частоты тренировок в некоторых пределах может не играть существенной роли. Кроме того, значение каждого из параметров нагрузки значительно зависит от выбора показателей, по которым судят о тренировочной эффективности.

Так, например, если прирост максимального потребления кислорода в значительной степени зависит от интенсивности тренировочных нагрузок, то снижение частоты сердечных сокращений при тестовых субмаксимальных нагрузках более зависит от частоты и общей длительности тренировочных занятий.

Оптимальные пороговые нагрузки зависят также от вида тренировки (силовая, скоростно-силовая, выносливость, игровая, техническая и т.д.) и от ее характера (непрерывная, циклическая или повторно-интервальная). Так, например, повышение мышечной силы достигается за счет тренировки с большими нагрузками (вес, сопротивление) при относительно малом их повторении на каждой тренировке. Примером прогрессивно нарастающей нагрузки при этом является метод повторного максимума, который является максимальной нагрузкой, которую человек может повторить определенное количество раз. При оптимальном количестве повторений от 3 до 9 по мере роста тренированности вес увеличивается так, чтобы это количество сохранялось при околопредельном напряжении.

Пороговой нагрузкой в данном случае можно рассматривать величину веса (сопротивление), превышающую 70% произвольной максимальной силы тренируемых мышечных групп.

В отличие от этого выносливость повышается в результате тренировок с большим числом повторений при относительно малых нагрузках. При тренировке выносливости для определения пороговой нагрузки необходимо учитывать интенсивность, частоту и длительность нагрузки, ее общий объем. Подвижностью в суставах называется способность выполнять движения с максимально возможной амплитудой. Подвижность позвоночника и суммарная подвижность в основных суставах обозначается термином "гибкость". Высокий уровень развития подвижности в суставах облегчает приобретение и совершенствование новых двигательных навыков, предохраняет от травм опорно-двигательного аппарата, способствует снижению напряжения мышц при выполнении движений, облегчает реализацию силовых, скоростных и координационных способностей.

Подвижность в суставах и гибкость подразделяются на активную и пассивную. Активная подвижность в суставах - это та подвижность, которую спортсмен демонстрирует самостоятельно за счет активной работы собственных мышц. Пассивная подвижность в суставах определяется максимальной амплитудой движений, которую демонстрирует спортсмен с помощью внешних сил (партнера или отягощения). Пассивная подвижность в суставах больше активной, она определяет "запас подвижности" для увеличения амплитуды активных движений.

Поэтому в тренировке пловцов нужно применять средства и методы развития обоих видов подвижности в суставах. Подвижность в суставах и гибкость лимитируются анатомо-физиологическими особенностями опорно-двигательного аппарата, к которым относятся: - - - - Активная подвижность в суставах в основном определяется силой мышц-синергистов и эластичностью мышц-антагонистов, сухожилий и связок.

Пассивная подвижность в суставах зависит от соответствия суставных поверхностей и эластичности связок и мышц, окружающих сустав. Развитие подвижности в суставах и гибкости проводится с помощью пассивных, активно-пассивных и активных упражнений. В пассивных упражнениях максимальная амплитуда движения достигается за счет усилия, прилагаемого партнером.

В активно-пассивных движениях увеличение амплитуды достигается за счет собственного веса тела (шпагат, подтягивание в висах на перекладине и кольцах и т.п.). К активным упражнениям, направленным на развитие подвижности в суставах, относятся махи, медленные движения с максимальной амплитудой, статические напряжения с сохранением позы. Для эффективного развития подвижности в суставах и для избежания травматизма упражнения на гибкость должны выполняться после хорошего разогревания, обычно после разминки или в конце основной части тренировочных занятий на суше или между отдельными подходами в силовых тренировках.

В последнем случае растяжение мышц и сухожилий после силовых упражнений снижает тоническое напряжение мышц и тем самым способствует повышению скорости восстановления после нагрузок. Подбор упражнений для развития подвижности в суставах и гибкости обусловлен специфическими требованиями избранного вида спорта.

У пловцов уровень подвижности в различных суставах обусловлен специализацией в одном или нескольких способах плавания. Так, для брассистов характерны высокая подвижность в коленном, тазобедренном суставах, большая амплитуда тыльного сгибания в голеностопе, малая амплитуда подошвенного сгибания и низкая подвижность плечевых суставов. Для пловцов-дельфинистов свойственны высокая подвижность в плечевых, тазобедренных, коленных суставах, хорошая гибкость в грудном и поясничном отделах позвоночного столба.

Наибольшей подвижностью в плечевых суставах, как и амплитудой подошвенного сгибания в голеностопе отличаются пловцы, специализирующиеся в плавании на спине. Среди кролистов-спринтеров одинаково часто можно встретить пловцов с высокой и низкой подвижностью в плечевых, коленных и голеностопных суставах. «Кролисты», специализирующиеся в плавании на средние и длинные дистанции, как правило, опережают по уровню гибкости кролистов-спринтеров, но уступают дельфинистам и спинистам.

В соответствии со специфической топографией подвижности в суставах пловцы разных специализаций используют свои специфические комплексы упражнений, направленных на развитие подвижности в суставах. Увеличение подвижности в суставах у пловцов благоприятно отражается на техническом совершенствовании и создает предпосылки для роста спортивных результатов. Комплексы упражнений на развитие подвижности в суставах и гибкости рекомендуется начинать с активных и активно-пассивных упражнений.

Применение пассивных упражнений для развития гибкости требует специального обучения спортсменов и постоянного контроля со стороны тренера, так как высока степень риска получения тяжелых травм суставов и мышц. После пассивных упражнений целесообразно выполнять активные упражнения на развитие подвижности в тех же суставах. 3.2

Конец работы -

Эта тема принадлежит разделу:

Влияние физических нагрузок на опорно-двигательный аппарат на примере плавания

Автоматизация производства, развитие транспорта, улучшение условий жизни привели к снижению двигательной активности большинства людей.В организме.. Возрос и темп жизни. Актуальной проблемой становится борьба с.. Сами по себе стрессовые воздействия умеренной силы имеют тренирующий характер и приводят к адаптации к ним..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях: