Структурная схема автоматизации технологического процесса. Техника чтения схем автоматизации

Функциональная схема автоматического контроля и управления

предназначена для отображения основных технических решений,

принимаемых при проектировании систем автоматизации технологических

процессов. Объектом управления в системах автоматизации технологических

процессов является совокупность основного и вспомогательного

оборудования вместе с встроенными в него запорными и регулирующими

органами.

Функциональная схема является техническим документом, определяющим

функционально-блочную структуру отдельных узлов автоматического

контроля, управления и регулирования технологического процесса и

оснащения объекта управления приборами и средствами автоматизации. На

функциональной схеме изображаются системы автоматического контроля,

регулирования, дистанционного управления, сигнализации, защиты и

блокировок.

Все элементы систем управления показываются в виде условных
изображений и объединяются в единую систему линиями функциональной
связи. Функциональная схема автоматического контроля и управления
содержит упрощенное изображение технологической схемы

автоматизируемого процесса. Оборудование на схеме показывается в виде условных изображений.

В соответствии с ГОСТ 36-27-77 «Приборы и средства автоматизации. Обозначения условные в схемах автоматизации технологических процессов» устанавливаются обозначения измеряемых величин, функциональные признаки приборов, линии связи, а также способы и методика построения условных графических обозначений приборов и средств автоматизации.

При разработке функциональной схемы автоматизации технологического процесса необходимо решить следующие задачи:

Задачу получения первичной информации о состоянии технологического процесса и оборудования;

Задачу непосредственного воздействия на ТП для управления им и стабилизации технологических параметров процесса;

Задачу контроля и регистрации технологических параметров процессов и состояния технологического оборудования.

При разработке функциональной схемы определяют:

1) целесообразный уровень автоматизации технологического процесса;

2) принципы организации контроля и управления технологическим
процессом;

3) технологическое оборудование, управляемое автоматически,
дистанционно или в обоих режимах по заданию оператора;

4) перечень и значения контролируемых и регулируемых параметров;

5) методы контроля, законы регулирования и управления;

6) объем автоматических защит и блокировок автономных схем управления технологическими агрегатами;

7) комплект технических средств автоматизации, вид энергии для передачи информации;

8) места размещения аппаратуры на технологическом оборудовании, на щитах и пультах управления.


Схема автоматизации должна быть составлена таким образом, чтобы из нее легко можно было определить:

1) параметры технологического процесса, которые подлежат автоматическому контролю и регулированию;

2) наличие защиты и аварийной сигнализации;

3) принятую блокировку механизмов;

4) организацию пунктов контроля и управления;

5) функциональную структуру каждого узла контроля, сигнализации, автоматического регулирования и управления;

6) технические средства, с помощью которых реализуется тот или иной функциональный узел контроля, сигнализации, автоматического регулирования и управления.

В соответствии с рекомендациями ГОСТ 2.702-75 «Правила выполнения электрических схем» графическое построение схемы должно давать наглядное представление о последовательности взаимодействия функциональных частей в системе. На функциональной схеме должны изображаться функциональные части изделия (элементы, устройства и функциональные группы), участвующие в процессе, иллюстрируемой схемой, и связи между этими частями.

Общепринятым являются два варианта представления функциональной схемы:

по ГОСТ 21.404-85 «Автоматизация технологических процессов. Обозначения условные приборов и средств автоматизации в схемах» и ГОСТ 21.408-93 «Система проектной документации для строительства. Правила выполнения рабочей документации автоматизации технологических процессов»;

по Стандарту американского общества приборостроителей ANSI/ISA S5.1. «Instrumetation Symbols and Identification».

Примером применения ГОСТ является схема КИПиА, приведенная в приложении ГОСТа 21.408-93 (рис.6). На этой схеме показаны:

Канал преобразования информации чувствительного элемента 7а в унифицированный сигнал 7б;

Канал преобразования управляющего сигнала 7в в управляющее воздействие на исполнительный орган (клапан) 7и с возможностью управления им с панели дистанционного управления 7е, индикацией положения ключа и использованием ручного ключа управления 7г;

Канал сигнализации 7д со световыми сигналами HL1/2.

В шкафу блоков (например, в шкафу релейной автоматики) осуществляется преобразование сигнала измерения для дистанционной передачи. На операторском щите осуществляется наблюдение и ручное (контроллерное) управление. Контур управления замыкается исполнительным устройством.

На экранах диспетчерского уровня осуществляется мониторинг, управление и конфигурирование АС (нижняя часть схемы).

Важно для сигналов на схеме указать размерность и пределы измерений физических параметров: мм, о С, МПа, м 3 /час и др.


Рис.6 Пример функциональной схемы автоматизации по ГОСТ

Функциональные части и связи между ними на схеме изображаются в виде условных графических обозначений, установленных в стандартах Единой Системы Конструкторской Документации. Особую роль при этом занимает семантика абревиатуры КИПиА. Рекомендуемым способом построения системы наименования КИПиА, установленным в ГОСТ, является формирование многобуквенного имени, на первой позиции которого может стоять любая из 20 букв латинского алфавита, на второй - любая из 5 букв, на третьей - любая из 7 и т.д. (например, LIR, где L- уровень; I- показания; R-регистрация).

Примером применения ANSI стандарта является схема КИПиА приведенная на рис. 7.


На этом рисунке можно выделить 4 уровня АС: нижний уровень- это двигатель насоса, уровень щитовых приборов - YSLH и YS, уровень логики блокировок и управления и верхний уровень- сигнализация состояния исполнительных и командных элементов системы автоматизации.

Блок защиты и управления электродвигателем ESD обеспечивает:

Мягкий пуск двигателя;

Реверс двигателя;

Торможение с заданным током в течение заданного времени;

Ограничение токов при пуске, движении и торможении;

Управление по дискретным сигналам, по последовательному интерфейсу, с местного поста управления;

Отключение нагрузки при коротком замыкании;

Отключение по таймеру;

Проверка наличия фаз электродвигателя через заданные промежутки времени и выдача предупреждений в остановленном состоянии;

Определение изменения чередования фаз при включении блока и выдача предупреждений;

Определение провала одной из фаз сети ниже установленного уровня и выдача предупреждения;

Регулирование угла открытия тиристоров с помощью сигнала аналогового входа.

Состояние насоса показывается щитовым прибором YSLH. По этому сигналу формируется логика блокировок YSL, которая отражается затем предупредительной сигнализацией останова YAL и сигнализацией работа YLH.

По состоянию щитового ключа YS формируется логика релейного управления двигателем, которая отражается сигнализацией YL.


По состоянию ключа YS включается дистанционно формирователь напряжения ESD, что подтверждается индикацией «Блокировка сработала» LA. Связь с первичным и вторичными приборами показывается прерывистой линий.

В системах технологического контроля и управления часто используются комбинированные и комплексные устройства, такие как

Рис.8 Пример щитовой части разнесенного варианта функциональной схемы

комбинированные измерительные и регулирующие приборы,

микропроцессоры, компьютеры, полукомплекты телемеханики и т.п. Такие устройства обозначают прямоугольником произвольных размеров с указанием внутри прямоугольника (рис.8) типа устройства (U- несколько разнородных измеряемых величин; Y- преобразования и вычислительные функции; I- показания; R- регистрация; C- управление; S- включение, отключение, переключение, блокировка; A- сигнализация).

Всем КИПиА, изображенным на функциональной схеме автоматизации, присваиваются позиционные обозначения, состоящие из двух частей: арабских цифр – номера функциональной группы и строчных букв русского алфавита – номера КИПиА в данной функциональной группе (например, 5а, 3б и т.п.).

Буквенные обозначения присваивают каждому элементу функциональной группы в порядке алфавита в зависимости от последовательности прохождения сигнала – от устройств получения информации к устройствам воздействия на управляемый процесс (например, первичный измерительный прибор, вторичный преобразователь, задатчик, регулятор, указатель положения, исполнительный механизм, регулирующий орган).

Допускается вместо букв русского алфавита использовать арабские цифры (например, 5-1, 3-2 и т.д.).

Позиционные обозначения отдельных приборов и средств автоматизации, таких как регулятор прямого действия, манометр, термометр, и т.п., состоят только из порядковых номеров.


При определении границ каждой функциональной группы необходимо учитывать следующее обстоятельство: если какой-либо прибор или регулятор связан с несколькими датчиками или получает дополнительные воздействия по другим параметрам (например, корректирующий сигнал), то все элементы схемы, осуществляющие дополнительные функции, относятся к той функциональной группе, на которую оказывается воздействие. В частности, регулятор соотношения входит в состав той функциональной группы, на которую оказывается ведущее воздействие по независимому параметру.

В системах централизованного контроля с применением вычислительной техники, в системах телеизмерения, а также в сложных схемах автоматического управления с общими для разных функциональных групп устройствами все общие элементы выносятся в самостоятельные функциональные группы.

Позиционные обозначения проставляют, как правило, в нижней части окружности, обозначающей прибор, или рядом с ней с правой стороны, или над ней.


Похожая информация.


В общем виде структурная схема одноконтурной системы автоматического управления представлена на рисунке 1.1. Система автоматического управления состоит из объекта автоматизации и системы управления этим объектом. Благодаря определенному взаимодействию между объектом автоматизации и схемой управления система автоматизации в целом обеспечивает требуемый результат функционирования объекта, характеризующий его выходными параметрами и характеристиками.

Всякий технологический процесс характеризуется определенными физическими величинами (параметрами). Для рационального хода технологического процесса некоторые его параметры требуется поддерживать постоянными, а некоторые изменять по определенному закону. При работе объекта, управляемого системой автоматизации, в основном ставится задача поддержания рациональных условий протекания технологического процесса.

Рассмотрим основные принципы построения структур локальных автоматических систем регулирования. При автоматическом регулировании решаются, как правило, задачи трех типов.

К первому типу задач относится поддержание на заданном уровне одного или нескольких технологических параметров. Автоматические системы регулирования, решающие задачи такого типа, называют системами стабилизации. Примерами систем стабилизации могут служить системы регулирования температуры и влажности воздуха в установках кондиционирования воздуха, давления и температуры перегретого пара в котлоагрегатах, числа оборотов в паровых и газовых турбинах, электродвигателях и т.п..

Ко второму типу задач относится поддержание соответствия между двумя зависимыми или одной зависимой и другими независимыми величинами. Системы, регулирующие соотношения, получили название следящих автоматических систем, например автоматические системы регулирования соотношения «топливо - воздух» в процессе сжигания топлива или соотношения «расход пара – расход воды» при питании котлов водой и др.

К третьему типу задач относится изменение регулируемой величины во времени по определенному закону. Системы, решающие этот тип задач, называют системами программного регулирования. Характерным примером такого типа систем является система управления температурным режимом при термической обработке металла.

В последние годы широко применяют экстремальные (поисковые) автоматические системы, обеспечивающие максимальный положительный эффект функционирования технологического объекта при минимальных затратах сырья, энергии и т.п.

Совокупность технических средств, с помощью которых одну или несколько регулируемых величин без участия человека-оператора приводят в соответствие с их постоянными или изменяющимися по определенному закону заданными значениями путем выработки воздействия на регулируемые величины в результате сравнения их действительных значений с заданными, называют автоматической системой регулирования (АСР) или автоматической системой управления. Из определения следует, что в общем случае в состав простейшей АСР должны входить следующие элементы:

объект управления (ОУ), характеризующийся регулируемой величиной х n . x(t);

измерительное устройство (ИУ), измеряющее регулируемую величину и преобразующее ее в форму, удобную для дальнейшего преобразования либо для дистанционной передачи;

задающее устройство (ЗУ), в котором устанавливается сигнал уставки, определяющий заданное значение или закон изменения регулируемой величины;

сравнивающее устройство (СУ), в котором действительное значение регулируемой величины х сравнивается предписанным значением g(t) и,

выявляется отклонение (g(t)- x(t));

регулирующее устройство (РУ), вырабатывающее при поступлении на его вход отклонения (ε) регулирующее воздействие, которое необходимо подать на объект регулирования, чтобы устранить имеющееся отклонение регулируемой величины х от предписанного значения g(t);

исполнительный механизм (ИМ). На выходе РУ регулирующее воздействие имеет небольшую мощность и, выдается в форме, не пригодной в общем случае для непосредственного воздействия на объект регулирования. Требуется либо усиление регулирующего воздействия, либо преобразования в удобную форму х р. Для этого применяют специальные исполнительные механизмы, являющиеся исполнительными выходными устройствами регулирующего элемента;

регулирующий орган (РО). Исполнительные механизмы не могут непосредственно воздействовать на регулируемую величину. Поэтому объекты регулирования снабжают специальными регулирующими органами РО, через которые ИМ воздействует на регулируемую величину;

линии связи, через которые сигналы передаются от элемента к элементу в автоматической системе.

В качестве примера рассмотрим укрупненную структурную схему автоматического управления (рисунок 1.1). На схеме выходные параметры -результат работы управляемого объекта, обозначены х 1 , х 2 , ………х n . Кроме этих основных параметров, работа объектов автоматизации характеризуется рядом вспомогательными параметрами (у 1 , у 2 ,…….у n), которые должны контролироваться и регулироваться, например, поддерживаться постоянными.

Рисунок 1.1. Структурная схема автоматического управления

В процессе работы на объект управления поступают возмущающие воздействия f1 …. fn, вызывающие отклонения параметров х1…….хn от их рациональных значений. Информация о текущих значениях х тек и у тек поступает в систему управления и сравнивается с их предписанными значениями (уставками) g1…… gn, в результате чего система управления оказывает управляющие воздействия Е1…..Еn на объект, направленные на компенсацию отклонений текущих выходных параметров от заданных значений.

По структуре системы автоматического управления объектом автоматизации могут быть в частных случаях одноуровневыми централизованными, одноуровневыми децентрализованными и многоуровневыми. При этом одноуровневыми системами управления называют системы, в которых управление объектом осуществляется из одного пункта управления или из нескольких самостоятельных. Одноуровневые системы, в которых управление осуществляется из одного пункта управления, называют централизованными. Одноуровневые системы, в которых отдельные части сложного объекта управляются из самостоятельных пунктов управления, называют децентрализованными.

2.2 Функционально – технологические схемы автоматического управления

Функционально-технологическая схема – основной технический документ, определяющий функционально-блочную структуру приборов узлов и элементов системы автоматического управления, регулирования технологического процесса (операций) и контроля его параметров, а также оснащение объекта управления приборами и средствами автоматизации. Также схемы часто называют просто схемами автоматизации. Состав и правила выполнения диктуются требованиями стандартов (см. гл.1).

Функционально-технологическую схему автоматизации выполняют на одном чертеже, на котором условными обозначениями изображены технологическое оборудование, транспортные линии и трубопроводы, контрольно-измерительные приборы и средства автоматизации с указанием связей между ними. Вспомогательные устройства (источники питания, реле, автоматы, выключатели, предохранители и т.п.) на схемах не показывают.

Функциональные схемы автоматизации связаны с технологией производства и технологическим оборудованием, поэтому на схеме показывают размещение технологического оборудования упрощенно, без соблюдения масштаба, но с учетом действительной конфигурации.

Кроме технологического оборудования на функциональных схемах автоматизации в соответствии со стандартами упрощенно (двухлинейное) и условно (однолинейное) изображают транспортные линии различного назначения.

Как построение так и изучение схем технической документации надо вести в определенной последовательности.

Параметры технологического процесса, которые подлежат автоматическому контролю и регулированию;

Функциональную структуру управления;

Контуры регулирования;

Наличие защиты и аварийной сигнализации и принятую блокировку механизмов;

Организацию пунктов контроля и управления;

Технические средства автоматизации, с помощью которых решаются функции контроля, сигнализации, автоматического регулирования и управления.

Для этого, необходимо знать принципы построения систем автоматического управления технологического контроля и условные изображения технологического оборудования, трубопроводов, приборов и средств автоматизации, функциональных связей между отдельными приборами и средствами автоматизации и иметь представление о характере технологического процесса и взаимодействии отдельных установок и агрегатов технологического оборудования.

На функциональной схеме линии коммуникации и трубопроводы чаще показывают в однолинейном изображении. Обозначение транспортируемой среды может быть как цифровым, так и буквенно-цифровым. (Например: 1.1 или В1). Первая цифра или буква указывает вид транспортируемой среды, а последующая цифра – ее назначение. Цифровые или буквенно-цифровые обозначения представляют на полках линий-выносок или над транспортной линией (трубопровода), а в необходимых случаях – в разрывах транспортной линий (при этом принятые обозначения поясняют на чертежах или в текстовых документах (см.таблицу 1.1.). На технологических объектах показывают ту регулирующую и запорную арматуру, технологические аппараты, которые непосредственно участвуют в контроле и управлении процессом, а также отборные (датчики), запорные и регулирующие органы, необходимые для определения относительного расположения мест отбора (мест установки датчиков), также измерения или контроля параметров (см. табл.1.2).

Комплектные устройства (машины централизованного контроля, управляющие машины, полукомплекты телемеханики и т.п.) обозначают прямоугольником произвольных размеров с указанием внутри прямоугольника типа устройства (по документации завода - изготовителя).

В отдельных случаях некоторые элементы технологического оборудования также изображают на схемах в виде прямоугольников с указанием наименования этих элементов. При этом около датчиков, отборных, приемных и других, подобных по назначению устройств указывают наименование того технологического оборудования, к которому они относятся.

Таблица 1.1. Обозначение транспортных линий трубопроводов по ГОСТ 14.202 – 69

Содержимое транспортных линий (трубопроводов) Условное Цифровое и буквенное обозначение Обозначение в цвете
Жидкость или газ (общее) - Красный, желтый
Вода Пар Воздух Кислород - 1.1 - 1.0 - - 2.1 - 2.0 - - 3.1 - 3.6 - - 3 - 7 - Зеленый Розовый Голубой Синий
Инертные газы - 5.1-5.0 - Фиолетовый
Аммиак Кислота (окислитель) Щелочь Масло Жидкое горючее - 11 - 11 - - 3 - 7 - - 7.1-7.0 - -8.4 – 14 – - 8.6 - Серый Оливковый Серо – коричневый Коричневый Желтый
Горючие и взрывоопасные газы -16 – 16 - Оранжевый
Водопровод ВО – В9 -
Противопожарный трубопровод В2 Светло - серый
Канализация КО – К12 -
Теплопровод ТО – Т8 -

Таблица 1.2. Условные обозначения технологической арматуры

Наименование Обозначение по ГОСТ 14.202 - 69
Вентиль запорный проходной (задвижка)
Вентиль с электрическим приводом
Вентиль трехходовой
Клапан предохранительный
Затвор поворотный (заслонка, шибер)
Привод исполнительный мембранный
Таблица 1.3. Выходные электрические коммутирующие элементы
Наименование Обозначение по ГОСТ 2.755 - 87
Контакт для коммутации сильноточной цепи (контакт контактора)
Контакт замыкающий
Контакт размыкающий

Для облегчения чтения схем на трубопроводах и других транспортных линиях проставляют стрелки, указывающие направление движения вещества.

В функционально-технологической схеме, а также у изображения трубопровода, по которому вещество уходит из данной системы, делается соответствующая надпись, например: «Из цеха абсорбции», «От насосов», «В схему полимеризации».

Рисунок 1.2. Изображение датчиков и отборных устройств (фрагмент)

Условные графические обозначения средств автоматизации приведены в таблицах 1.2., 1.3., 1.4.. Условные графические обозначения электроаппаратуры, применяемые в функциональных схемах автоматизации, следует изображать в соответствии со стандартами (табл. 1.3.). При отсутствии стандартных условных обозначений каких – либо автоматических устройств следует принять свои обозначения и пояснить их надписью на схеме. Толщина линий этих обозначений должна быть 0,5 – 0,6 мм, кроме горизонтальной разделительной линии в условном изображении прибора, устанавливаемого на щите, толщина, которой 0,2 – 0,3 мм.

Отборное устройство для всех постоянно подключенных приборов не имеет специального обозначения, а представляет собой тонкую сплошную линию, соединяющую технологический трубопровод или аппарат с прибором (рис. 1.2. приборы 2 и 3а). При необходимости указания точного места расположения отборного устройства или точки измерения (внутри графического обозначения технологического аппарата) в конце жирно изображают окружность диаметром 2 мм (рис. 1.2 приборы 1 и 4а).

Таблица 2.4. Условные графические обозначения средств автоматизации и приборов

Наименование Условное обозначение по ГОСТ 21.404 - 85
Первичный измерительный преобразователь (датчик) или прибор, устанавливаемый по месту (на технологической линии, аппарате, стене, полу, колонне, металлоконструкции). Базовое Допускаемое
Прибор, устанавливаемый на щите, пульте Базовое Допускаемое
Отборное устройство без постоянного подключения прибора
Исполнительный механизм
Выключатель путевой
Звонок электрический, сирена, гудок
Электронагреватель: а) сопротивления, в) индукционный
Прибор регистрирующий
Лампа накаливания, газоразрядная (сигнальная)
Машина электрическая трехфазная (М – двигатель, G - генератор)
Машина электрическая постоянного тока (двигатель М, генератор G)

Для получения полного (свободно читаемого) обозначения прибора или другого средства автоматизации в его условно-графическое изображение в виде круга или овала вписывают буквенное условное обозначение, которое и определяет назначение, выполняемые функции, характеристики и параметры работы. При этом месторасположение буквы определяет ее значение. Таким образом, буквы, приведенные в таблице 1.5 – это основные параметры и функции, а буквы, приведенные в таблице 1.6 - уточняют функцию, параметр.

Таблица 1.5. Обозначение основных измеряемых параметров в схемах автоматизации

Измеряемый параметр Обозначение
Плотность D
Любая электрическая величина. Для конкретизации измеряемой электрической величины справа от условного графического изображения прибора необходимо дать ее наименование, например, напряжение, сила тока, мощность и т.п. E U, I, P
Расход F
Размер, положение, перемещение G
Время, временная программа K
Уровень L
Влажность M
Давление, вакуум P
Состав, концентрация и т.п. Q
Скорость, частота S
Температура T
Вязкость V
Масса W
Несколько разнородных измеряемых величин U

Для обозначения ручного управления используют букву H. Для обозначения величин, не предусмотренных стандартом, могут быть использованы резервные буквы: A, B, C, I, N, O, Y, Z (буква X - не рекомендуется). Использованные резервные буквы должны быть расшифрованы надписью на свободном поле схемы.

Ниже приведены обозначения уточняющих значений измеряемых величин.

Таблица 1.6. Дополнительные буквенные обозначения

Букву, служащую для уточнения измеряемой величины, ставят после буквы, обозначающей измеряемую величину, например P,D, - разность (перепад) давлений.

Функции, выполняемые приборами по отображению информации, обозначают латинскими буквами (см. таблицу 2.7).

Таблица 1.7. Буквенные обозначение функции

Дополнительно могут быть использованы обозначения буквами E, G, V.

Все перечисленные буквенные обозначения проставляют в верхней части окружности, обозначающей прибор (устройство).

Если для обозначения одного прибора используется несколько букв, то порядок их расположения после первой, обозначающей измеряемую величину, должен быть, например: TIR – прибор измерения и регистрации температуры, PR – прибор для регистрации давления.

При обозначении устройств, выполненных в виде отдельных блоков и предназначенных для ручных операции, на первом месте ставят букву H.

Для примера на рис. 1.2 приведена схема автоматизации с использованием регистрирующих приборов для температуры и перепада давлений, где для формирования условного обозначения прибора (комплекта), в верхней части окружности указывают функциональное назначение, а в нижней части окружности располагают позиционное обозначение его (буквенно – цифровое или цифровое – 1, 2, 4а, 4б, 3а, 3б). Таким образом, все элементы одного комплекта, т.е. одной функциональной группы приборов (первичный, промежуточный и передающий измерительные преобразователи, измерительный прибор, регулирующий прибор, исполнительный механизм, регулирующий орган), обозначают одной и той же цифрой. При этом цифру 1 присваивают первому (слева) комплекту, цифру 2 - второму и т.д.

Чтобы различить элементы одного комплекта, рядом с цифрой помещают буквенный индекс (буквы З и О, начертание которых похоже на начертание цифр, применять не рекомендуется): у первичного преобразователя (чувствительного элемента) – индекс «а», у передающего преобразователя – «б», у измерительного прибора – «в», и т.д. Таким образом, для одного комплекта полное обозначение первичного измерительного преобразователя будет 1а, передающего измерительного преобразователя 1б, измерительного (вторичного) прибора 1в, и т.д. при этом высота цифры равна 3,5 мм, высота буквы 2,5 мм.

Методика составления функционально-технологической схемы автоматизации.

Функциональная схема является основным техническим документом, определяющим структуру и характер автоматизации технологического процесса проектируемого объекта и оснащение его приборами и средствами автоматизации.

На функциональной схеме условно изображают технологическое оборудование, коммуникации, органы управления, приборы и средства автоматизации, а также связи между ними.

Пример оформления чертежа функциональной схемы автоматизации приведен на рис. 2.

При оформлении и описании функциональных схем терминология должна соответствовать ГОСТ 17194-71, а условные обозначения приборов и средств автоматизации - ГОСТ 3925-59.

При наличии однотипных технологических объектов (цехов, отделений, установок, агрегатов, аппаратов), не связанных между собой и имеющих одинаковое оснащение приборами и средствами автоматизации, функциональную схему выполняют для одного из них, при этом на чертеже дают пояснение, например «Схема составлена для агрегата 1; для агрегатов 2-5 схемы аналогичны». К этому добавляют пояснения относительно особенностей в позиционных обозначениях (маркировке) и в спецификации. Например, «В спецификации учтена аппаратура для пяти агрегатов. Маркировка приборов и средств автоматизации для агрегатов 2-5 аналогична приведенной для агрегата 1 с изменением цифрового индекса соответственно номеру агрегата».

Для обозначения на схемах запроектированных систем телеуправления (ТУ), телесигнализации (ТС) и телеизмерения (ТИ) в прямоугольниках щитов и (пультов вычерчивают горизонтальные линии с надписями с левой стороны ТУ, ТС, ТИ. Связь этих систем с приборами и средствами автоматизации показывают линиями связи. Технологическое оборудование и коммуникации автоматизированного объекта изображают на функциональных схемах упрощенно, но так, чтобы показать взаимное расположение и взаимодействие их с приборами и средствами автоматизации. Допускается изображение частей объекта в виде прямоугольников с указанием их наименования. На технологических коммуникациях (они изображаются по ГОСТ 3464-63) показывают только те регулирующие и запорные органы, которые участвуют в системе управления процессом. На линиях трубопроводов указываются диаметры условных проходов и стрелками обозначаются направления потоков вещества в соответствии с технологической схемой.

Приборы и средства автоматизации, встраиваемые в технологическое оборудование и коммуникации или механически связанные с ним, изображают на функциональных схемах в непосредственной близости к технологическому оборудованию. К ним относятся: отборные устройства давления, уровня, состава вещества, приемные устройства, воспринимающие воздействия измеряемых и регулируемых величин (сужающие устройства, ротаметры, термометры сопротивления, термобаллоны манометрических термометров, термопары и т. п.), исполнительные устройства, регулирующие и запорные органы.

Приборы и средства автоматизации, не имеющие непосредственной конструктивно-механической связи с технологическим оборудованием, показывают в прямоугольниках, расположенных в нижней части поля чертежа. К ним относятся: первичные преобразователи (датчики), работающие в комплекте с отборными устройствами, преобразователями, усилителями; приборы и аппаратура управления и т. п. Они располагаются на схеме в один или несколько горизонтальных рядов и условно ограничиваются прямоугольниками.

В прямоугольнике слева указываются их наименования: «Приборы местные», «Щит управления» и т. д. Вспомогательную аппаратуру и устройства ( , фильтры и редукторы пневмопитания, предохранители, магнитные пускатели и т. п.), не влияющие на функциональную структуру схемы автоматизации, на схемах не показывают.

Исключение составляют магнитные пускатели, используемые в контурах регулирования для управления исполнительными устройствами. Приборы на щитах показывают на схеме условно в нижнем прямоугольнике, над ним располагаются приборы местные.

Линии связи на функциональной схеме изображают одной линией зависимо от количества проводов и труб, осуществляющих эту связь, и наносят с наименьшим количеством изломов и пересечений. Линии связи должны четко отображать функциональные связи между элементами схемы от начала прохождения сигнала до конца. Допускается объединять в одну общую линию блокировочные линии связи. В целях удобства чтения функциональных схем автоматизации с большим количеством технологического оборудования и средств автоматизации под прямоугольниками щитов и пультов допускается вычерчивать прямоугольник с надписями, поясняющими назначение изображенных средств автоматизации.

На схемах всем приборам и средствам автоматизации присваиваются позиционные обозначения.

Обозначения однозначно определяют тип и место установки устройства. Каждому комплекту средств автоматизации присваивается порядковый номер (например, комплект 1 на рис. 2). Комплектом считаются функционально-связанные устройства, выполняющие определенную задачу. Каждому устройству комплекта присваивается буквенно-цифровое обозначение, состоящее из порядкового номера комплекта и буквенного индекса.

На чертежах функциональных схем в правой стороне над штампом чертежа помещают спецификацию (один из вариантов выполнения схем), которая является исходным материалом для составления заявочных ведомостей и заказных спецификаций. Если в проекте предусмотрено использование нового технологического оборудования, то его спецификация располагается первой, затем помещается спецификация на средства автоматизации, причем по группам «приборы местные», «приборы на щитах».

В спецификацию включаются все устройства, которым на схемах присвоены позиционные обозначения.

Обозначения основных величин и условные изображения приборов и средств автоматизации в схемах.

ГОСТ 3925-59 установлены обозначения измеряемых и регулируемых величин и условные изображения приборов и устройств автоматизации, применяемые в функциональных схемах. К ним относятся обозначения основных контролируемых и регулируемых величин, наименований основных электроизмерительных приборов, а также изображения приборов измерительных и регулирующих, видов передач дистанционного воздействия, первичных преобразователей, воспринимающих воздействие измеряемых или регулируемых величин, исполнительных механизмов и регулирующих органов, дополнительных устройств и рекомендуемые размеры изображений приборов и средств.

В ГОСТе даны примеры применения условных изображений приборов, регуляторов прямого действия, регулирующих приборов, состоящих из нескольких звеньев, и обозначения контролируемых и регулируемых величин, а также пример изображения функциональной схемы автоматизации.

Схема автоматизации при разработке АСУТП является своеобразной объединен­ной функциональной схемой технологического объекта управления, охватывающей так называемое «полевое оборудование» нижнего уровня системы и показывающей его связи с приборами, средствами управляющей вычислительной техники и пункта­ми контроля и управления более высокого уровня.

Схема автоматизации выполняется с учетом требований раздела 2 ГОСТ 2.702-75* ЕСКД, п. 2.4 ГОСТ 24.302-80, раздела 4.1 РД 50-34.698-90 и раздела4.3 ГОСТ 21.408-93 СПДС.

Схема автоматизации разрабатывается в целом на технологический объект управ­ления ТОУ АСУТП или на отдельную инженерную систему (электроснабжение, те­плоснабжение, вентиляция и т. п.) или часть технологической/инженерной системы, процесса и операции: линию, участок, блок, установку, агрегат.

Пример: функциональная схема автоматизации парового котла

Функциональная схема разрабатывается на основании исходных материалов по созданию АСУТП и в первую очередь материалов технологического регламента или отдельных документов, включаемых в «технологический регламент».

Наилучшим вариантом функциональной схемы автоматизации ТОУ является схема, совмещенная со схемой соединений, которая выполняется в составе основного комплекта марки Т по ГОСТ 21.401-88 СПДС или со схемами соединений инженерных систем.

Выполнение совмещенной схемы допускается п. 3.3 ГОСТ 21.404-88 «Техноло­гия производства. Основные требования к рабочим чертежам».

В зарубежной практике применяется разработка PID схем (Process Instrument Diagram). Разработка совмещенной схемы специалистами по технологической час-н (ТХ, ОВ, ВК, ЭМ и др.) совместно со специалистами по разработке АСУТП (.в том числе низового, «полевого» уровня) дает наиболее эффективные решения в обеих частях проекта (например, ТХ и АТХ).

Так как подобная схема выпускается за двумя подписями (ТХ и АТХ), то любое изменение в части ТХ автоматически становится достоянием разработчиков АТХ, -:то снимает многие конфликтные ситуации, возникающие при раздельном выпуске документов - отдельно схем соединений ТХ (ОВ, ВК и др.) и отдельно схем автома­тизации АТХ.

Схема автоматизации (СЗ) при разработке ее отдельно от выпуска схемы со­пений ТХ (ОВ, ВК и др.) должна быть согласована с соответствующими специ­алистами технологической (сантехнической, отопления и вентиляции и др.) части проекта.

Следует учесть, что в схеме соединений (ТХ, ОВ, ВК) согласно п. 3.2 ГОСТ 1 1 -88 должны быть указаны «…трубопроводы и их элементы» со всеми буквенно-цифровыми обозначениями.

Приведем пояснения некоторых терминов.

Технологический блок - комплекс или сборочная единица технологического оборудования заданного уровня заводской готовности и производственной техно­логичности, предназначенные для осуществления основных или вспомогательных технологических процессов. В состав блока включают машины, аппараты, первич­ные средства контроля и управления, трубопроводы, опорные и обслуживающие конструкции, тепловую изоляцию и химическую защиту.

Блоки, как правило, фор­мируют для осуществления теплообменных, массообменных, гидродинамических, химических и биологических процессов. Номенклатура блоков устанавливается ве­домственными нормативными документами, согласованными с министерствами, осуществляющими монтажные работы.

Технологический трубопровод - трубопровод, предназначенный для транспорти­рования различных веществ, необходимых для ведения технологического процесса или эксплуатации оборудования.

Элементы трубопровода - патрубки (трубы), отводы, переходы, тройники, флан­цы, компенсаторы, отключающая, регулирующая, предохранительная арматура, опо­ры, прокладки и крепежные изделия, устройства, устанавливаемые на трубопроводах для контроля и управления, конденсационные и другие детали и устройства.

Устройства, устанавливаемые на трубопроводах для контроля и управления, пока­зываются как элементы трубопровода на схеме соединений или совмещенной схеме.

Буквенно-цифровые обозначения наносятся на полках линий-выносок и соот­ветствуют номеру чертежа элемента.

Элемент (закладной элемент) - это деталь или сборочная единица, неразрывно встраиваемая в технологические аппараты и трубопроводы (бобышка, штуцер, кар­ман, гильза и т. п.).

Подобный элемент в соответствии со СНиП 3.05.07-85 «Системы автоматиза­ции» называется закладной конструкцией или закладным элементом.

Закладная конструкция или закладной элемент должен обеспечивать необходи­мую герметичность технологического оборудования и трубопровода до установки на них прибора автоматизации. Это позволяет проводить гидравлические и пневмати­ческие испытания оборудования и трубопроводов до установки приборов автомати­зации, до начала монтажно-наладочных работ систем автоматизации и АСУТП.

Отборное устройство - устройство, устанавливаемое на технологическом обору­довании или трубопроводе и предназначенное для подвода измеряемой среды к из­мерительным приборам или измерительным преобразователям (датчикам).

Заметим, что согласно п. 2.12 СНиП 3.05.07-85 закладные элементы или конструк­ции для монтажа первичных приборов, для установки отборных устройств давления, рас­хода и уровня и др. (заканчивающиеся запорной арматурой), индивидуальные приборы-расходомеры, расходомеры-датчики, регулирующие и запорные органы, обводные линии (байпасы), материалы для изготовления закладных элементов (конструкций) предусмат­риваются и осмечиваются в технологической части проекта (ТХ, ОВ, ВК).

Структурная схема (по ГОСТ) - это схема, определяющая основные функциональные части системы автоматизации, их назначение и взаимосвязи. Для автоматических систем часто составляют скелетные структурные схемы.

Структурная схема автоматизации предназначена для определения системы контроля и управления ТП данного объекта и установление связей между щитами и пультами управления, агрегатами, операторскими рабочими постами. Структурная схема является основным проектным документом, в котором устанавливаются оптимальные каналы административно-технического и операторского управления. В них отражаются особенности ТП и ТСА при создании локальных систем контроля и автоматизации.

Структурная схема в общем виде отражает используемый комплекс технических средств автоматизации, принцип взаимодействия технологического объекта с устройством управления и оперативным персоналом.

Построение структуры системы управления пресса для литья низа обуви будем производить исходя из контуров регулирования отдельных технологических параметров. Построение структурной схемы в общем виде позволит уточнить ее при выборе ТСА и компоновке выбранного оборудования.

На данном оборудовании можно выделить два объекта управления: ОУ1 - пресс-форма, ОУ2 - литьевая система.

Для первого объекта необходимо контролировать положение (Рисунок 2.1 ДП1, ДП2) и температуру пресс-формы (Рисунок 2.1 ДТ1).

В ОУ2 выделим следующие параметры: температура в трех зонах разогрева (Рисунок 2.1 ДТ2, ДТ3, ДТ4), давления расплава (Рисунок 2.1 ДД1), уровень термоэластопласта в загрузочном бункере (Рисунок 2.1 ДУ1), скорость вращения шнека в ходе цикла (Рисунок 2.1 ДС1).

Электрические сигналы с измерительных преобразователей поступают на управляющее устройство. Наиболее перспективным будет использование промышленного контроллера. Наличие встроенной памяти (RAM), таймеров, счетчиков, множество дискретных и аналоговых входов-выходов, возможность подключения дополнительных модулей, расширяющих возможности использования, унифицированный выходной сигнал - все это говорит в пользу применения промышленного контроллера.

Часть структурной схемы, показывающая устройства воздействия на технологический объект, имеет общий вид и представлена в виде 9 силовых преобразователей (ПР1 - ПР9) и 9 исполнительных механизмов (ИМ1 - ИМ9).

ИМ1 - привод пресс-формы;

ИМ2 - привод выталкивателя;

ИМ3 - регулятор напряжения, подаваемого на ТЭНы пресс-формы;

ИМ4 - двигатель системы охлаждения;

ИМ5, ИМ6, ИМ7 - регулятор напряжения, подаваемого на ТЭНы литьевой системы;

ИМ8 - двигатель вращения шнека;

ИМ9 - вентиль подачи расплава в пресс-форму.

Силовые преобразователи необходимы для преобразования управляющего сигнала промышленного контроллера в силовой, воздействующий непосредственно на ИМ.

На структурной схеме также изображены пульт управления (ПУ), блок аварийной сигнализации (БАС) и наличие канала связи с АСУ предприятия.

Структурная схема изображена на рисунке 2.1

Рисунок 2.1 - Структурная схема автоматизации