Схемы включения человека в электрическую цепь при прикосновении к проводникам тока. Схемы включения человека в электрическую цепь тока Электрические параметры, характеризующие связь сети с землей

Схемы включения в цепь тока могут быть различными. Однако наиболее характерными являются схемы включения: между двумя фазами и между одной фазой и землей (рис.1). Разумеется, во втором случае предполагается наличие электрической связи между сетью и землей.

Первая схема соответствует двухфазному прикосновению, а вторая - однофазному.

Напряжение между двумя проводящими частями или между проводящей частью и землёй при одновременном прикосновении к ним человека или животного называется напряжением прикосновения (U пр ).

Двухфазное прикосновение, при прочих равных условиях, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение - линейное, а ток через человека, оказываясь независимым oт схемы сети, режима нейтрали и других факторов, имеет наибольшее значение:

где
- линейное напряжение, т.e. напряжение между фазными проводами сети, В;

U ф - фазное напряжение, т.е. напряжение между началом и концом одной обмотки источника тока (трансформатора или генератора) или между фазным и нулевым проводами сети, В;

R h - сопротивление тела человека, Ом.

Рис. 6.1. Случаи прикосновения человека к токоведущим частям, находящимся под напряжением: а - двухфазное включение: б и в- однофазные включения

Случаи двухфазного прикосновения происходят очень редко и не могут служить основанием для оценки сетей по условиям безопасности. Они бывают обычно в установках до 1000 В в результате работы под напряжением, применения неисправных защитных средств, а также эксплуатации оборудования с неогражденными голыми токоведущими частями (открытые рубильники, незащищенные зажимы сварочных трансформаторов и т.п.).

Однофазное прикосновение, при прочих равных условиях, является менее опасным, чем двухфазное, поскольку ток, проходящий через человека, ограничивается влиянием многих факторов. Однако однофазное прикосновение возникает значительно чаще и является основной схемой, при которой происходит поражение людей током в сетях любого напряжения. Поэтому ниже анализируются лишь случаи однофазного прикосновения. При этом рассматриваются обе разрешенные к применению сети трехфазного тока напряжением до 1000 В: четырехпроводная с глухозаземленной нейтралью и трехпроводная с изолированной нейтралью.

6.2.4. Трехфазные сети с глухозаземленной нейтралью

В трехфазной четырехпроводной сети с глухозаземоенной нейтралью вычисление напряжения прикосновения U пр , и тока I h проходящего через человека, в случае прикосновения к одной из фаз (рис. 6.2) проще всего выполнить символическим (комплексным) методом.

Рассмотрим наиболее общий случай, когда сопротивления изоляции проводов, так же как и емкости проводов относительно земли не равны между собой, т.е.

r 1 r 2 r 3 r н ; С 1 С 2 С 3 С н ≠ 0,

где r 1 , r 2 , r 3 , r н - сопротивление изоляции фазных L и нулевого (совмещённого) PEN проводов, Ом;

C 1 , C 2 , C 3 , C н - рассредоточенные емкости фазных L и нулевого (совмещённого) PEN проводов относительно земли, Ф.

Тогда полные проводимости фазных и нулевого проводов относительно земли в комплексной форме будут:

;
;
;

где w - угловая частота, рад/с;

j - мнимая единица, равная (
).

Рис. 6.2. Прикосновение человека к фазному проводу трехфазной четырехпроводной сети с заземленной нейтралью при нормальном режиме работы: а - схема сети; б - эквивалентная схема; L 1, L 2, L 3, - фазные проводники; PEN - нулевой (совмещённый) провод.

Полные проводимости заземления нейтрали и тела человека равны соответственно

;
,

где r 0 - сопротивление заземления нейтрали, Ом.

Емкостной составляющей проводимости человека можно пренебречь ввиду ее малой величины.

При прикосновении человека к одной из фаз, например к фазному проводнику L1, напряжение, под которым он окажется, определится выражением

, (6.1)

Ток найдётся по формуле

где - комплексное напряжение фазы 1 (фазное напряжение), В;

- комплексное напряжение между нейтралью источника тока и землей (между точками 00" на эквивалентной схеме).

Пользуясь известным методом двух узлов, можно выразить следующим образом:

Имея в виду, что для симметричной трехфазной системы

;
;
,

где U ф - фазное напряжение источника (модуль), В;

а - фазовый оператор, учитывающий сдвиг фаз, где

,

будем иметь равенство

.

Подставив это значение в (6.1), получим искомое уравнение напряжения прикосновения в комплексной форме, воздействующего на человека, прикоснувшегося к фазному проводнику L1 трехфазной четырехпроводной сети с заземленной нейтралью:

. (6.2)

Ток, проходящий через человека, получим, если умножим это выражение на Y h :

. (6.3)

При нормальном режиме работы сети проводимость фазных и нулевого проводов относительно земли по сравнению с проводимостью заземления нейтрали имеет весьма малые значения и с некоторым допущением может быть приравнена к нулю, т.е.

Y 1 = Y 2 = Y 3 = Y н = 0

В этом случае уравнения (6.2) и (6.3) значительно упростятся. Так, напряжение прикосновения будет равно

,

или (в действительной форме)

, (6.4)

а ток равен

(6.5)

Согласно требованиям ПУЭ значение сопротивления r 0 не должно превышать 8 Ом, сопротивление же тела человека R h , не опускается ниже нескольких сотен ом. Следовательно, без большой ошибки в уравнениях (6.4) и (6.5), можно пренебречь значением r 0 и считать, что при прикосновении к одной из фаз трехфазной четырехпроводной сети с заземленной нейтралью человек оказывается практически под фазным напряжением U ф , и ток, проходящий через него, равен частному от деления U ф на R h .

Из уравнения (6.5) вытекает еще один вывод: ток, проходящий через человека, прикоснувшегося к фазе трехфазной четырехпроводной сети с заземленной нейтралью в период нормальной ее работы, практически не изменяется с изменением сопротивления изоляции и емкости проводов относительно земли, если сохраняется условие, что полные проводимости проводов относительно земли весьма малы по сравнению с проводимостью заземления нейтрали сети.

В этом случае существенно повышают безопасность сопротивления обуви, грунта (пола) и другие сопротивления в электрической цепи человека.

Глухое замыкание на землю в сети с глухозаземленной нейтралью мало изменяет напряжение фаз относительно земли.

При аварийном режиме, когда одна из фаз сети, например фазный проводник L3 (рис.6.3, а), замкнута на землю через относительно малое активное сопротивление r зм , а человек прикасается к фазному проводнику L1, уравнение (6.2) примет следующий вид:

.

Здесь также принимаем, что Y 1 , Y 2 и Y н малы по сравнению с Y 0 , т.е. приравнены к нулю.

Произведя соответствующие преобразования и учитывая, что

,
и
,

получим напряжение прикосновения в действительной форме

.

Для упрощения этого выражения допустим, что

.

В результате получим окончательно, что напряжение U пр равно

. (6.6)

Ток, проходящий через человека, определяется по формуле

. (6.7)

Рис. 6.3. Прикосновение человека к фазному проводу трехфазной четырехпроводной сети с заземленной нейтралью при аварийном режиме: а - схема сети; б - векторная диаграмма напряжений.

Рассмотрим два характерных случая.

    Если сопротивление замыкания проводов на землю r зм считать равным нулю, то уравнение (6.6) примет вид

.

Следовательно, в данном случае человек окажется под воздействием линейного напряжения сети.

2. Если принять равным нулю сопротивление заземления нейтрали r 0 , то из уравнения (6.6) получим, что U np = U ф , т.е. напряжение, под которым окажется человек, будет равно фазному напряжению.

Однако в практических условиях сопротивления r зм и r 0 всегда больше нуля, поэтому напряжение, под которым оказывается человек, прикоснувшийся в период аварийного режима к исправному фазному проводу трехфазной сети с заземленной нейтралью, всегда меньше линейного, но больше фазного, т.е.

> U пр > U ф . (6.8)

Это положение иллюстрируется векторной диаграммой, приведенной на рис. 6.3, б и соответствующей рассматриваемому случаю. Следует отметить, что этот вывод вытекает также из уравнения (6.6). Так, при небольших значениях r зм и r 0 по сравнению с R h , первым слагаемым в знаменателе можно пренебречь. Тогда дробь при любых соотношениях r зм и r 0 будет всегда больше единицы, но меньше
, т.е. получим выражение (6.8).

Оглавление книги Следующая страница>>

§ 3. Опасность поражения человека электрическим током.

Схема однофазного включения человека в сеть трехфазного тока с заземленной нейтралью.

Поражение человека током возникает при замыкании электрической цепи через тело человека. Это происходит в случае прикосновения человека не менее чем к двум точкам электрической цепи, между которыми имеется некоторое напряжение. Включение человека в цепь может произойти по нескольким схемам: между проводом и землей, называемое однофазным включением; между двумя проводами - двухфазное включение. Эти схемы наиболее характерны для трехфазных сетей переменного тока. Возможно также включение между двумя проводами и землей одновременно; между двумя точками земли, имеющими разные потенциалы, и т. п.

Однофазное включение человека в сеть представляет собой непосредственное соприкосновение человека с частями электроустановки или оборудования, нормально или случайно находящимися под напряжением. При этом степень опасности поражения будет различной в зависимости от того, имеет ли электрическая сеть заземленную или изолированную нейтраль, а также в зависимости от качества изоляции проводов сети, ее протяженности, режима работы и ряда других параметров.

При однофазном включении в сеть с заземленной нейтралью человек попадает под фазное напряжение, которое в 1,73 раза меньше линейного, и подвергается воздействию тока, величина которого определяется величиной фазного напряжения установки и сопротивления тела человека (рис. 69). Дополнительное защитное действие оказывает изоляция пола, на котором стоит человек, и обувь.

Рис. 69. Схема однофазного включения человека в сеть трехфазного тока с заземленной нейтралью

Таким образом, в четырех проводной трехфазной сети с заземленной нейтралью цепь тока, проходящего через человека, включает сопротивление его тела, а также сопротивления пола, обуви и заземления нейтрали источника тока (трансформатора и т. п.). При этом величина тока

где U л - линейное напряжение, В; R т - сопротивление тела человека, Ом; R п - сопротивление пола, на котором находится человек, Ом; R об - сопротивление обуви человека, Ом; R 0 - сопротивление заземления нейтрали, Ом.

В качестве примера рассмотрим два случая однофазного включения человека в трехфазную четырехпроводную электрическую сеть с заземленной нейтралью при U л = 380 В.

Случай с неблагоприятными условиями . Человек, прикоснувшийся к одной фазе, находится на сыром грунте или токо-проводящем (металлическом) полу, его обувь сырая или имеет металлические гвозди. В соответствии с этим принимаем сопротивления: тела человека R т =1000 Ом, грунта или пола R п =0; обуви R об = 0.

Сопротивление заземления нейтрали R 0 = 4 Ом в расчет в виду незначительной величины не принимаем. Через тело человека пройдет ток

являющийся опасным для жизни.

Случай с благоприятными условиями . Человек находится на деревянном сухом полу сопротивлением R п = 60 000 Ом, имеет на ногах сухую непроводящую (резиновую) обувь сопротивлением R об = 50 000 Ом. Тогда через тело человека пройдет ток

являющийся длительно допустимым для человека.

К тому же сухие полы и резиновая обувь обладают значительно большим сопротивлением в сравнении с величинами, принятыми для расчета.

Данные примеры показывают большое значение изолирующих свойств пола и обуви для обеспечения безопасности лиц, работающих в условиях возможного контакта с электротоком.

Рис. 3. Двухфазное (двухполюсное) прикосновение к токоведущим частям в системе IT .

U ф – фазное напряжение; I h – сила тока, протекающего через человека;

R h – сопротивление человека; L 1 , L 2 , L 3 – фазные проводники.

Сила тока (I h , А ), протекающего через человека, определяется по формуле

где U л – линейное напряжение, В ;

U ф – фазное напряжение, В ;

R h – сопротивление человека, Ом .

Например, в электросети с линейным напряжением 380 В (U ф = 220 В ) при сопротивлении тела человека 1000 Ом сила тока, протекающего через человека, составляет:

Эта сила тока смертельно опасна для человека.

При двухфазном прикосновении ток, проходящий через человека, практически не зависит от режима работы нейтрали. Опасность прикосновения не уменьшится и в том случае, если человек будет надёжно изолирован от земли.

Однофазное прикосновение (рис.4.) происходит во много раз чаще, чем двухфазное, но оно менее опасно, поскольку напряжение, под которым оказывается человек, не превышает фазного, т.е. меньше линейного в 1,73 раза и, кроме того, ток, протекающий через человека,

Рис.4. Однофазное (однополюсное) прикосновение к токоведущим частям в системе IT .

r 1 , r 2 , r 3 – сопротивление изоляции проводов электросети; с 1 , с 2 , с 3 – ёмкость проводов электросети.

возвращается к источнику (электросети) через изоляцию проводов, которая в исправном состоянии обладает большим сопротивлением.

Сила тока (I h , А ), протекающего через человека, для этого случая определяется по формуле

где R п – переходное сопротивление, Ом (сопротивление пола, на котором стоит человек и обуви); Z – сопротивление изоляции фазного провода относительно земли, Ом (активная и емкостная составляющие).

В наиболее неблагоприятной ситуации, когда человек имеет токопроводящую обувь и стоит на токопроводящем полу (R п ~ 0), сила тока, протекающего через тело, определяется по формуле

если U ф = 220 В , R h = 1 кОм , Z = 90 кОм , то I h = 220/(1000 + (90000 / 3)) = 0,007 А (7 мА ).

Трёхфазная четырёхпроводная электрическая сеть переменного тока с заземлённойнной нейтралью (в системе TN ).

Однофазное прикосновение к токоведущим частям.


Рис.5. Однофазное (однополюсное) прикосновение к токоведущим частям

в системе TN .

R 0 – сопротивление заземления нейтрали электросети.

В четырёхпроводной электрической сети переменного тока с глухозаземлённой нейтралью (система TN ) ток, проходящий через человека, возвращается к источнику (электросети) не через изоляцию проводов, как в предыдущем случае, а через сопротивление заземления нейтрали (R 0 ) источника тока (рис. 5). Сила тока, проходящего через тело человека, определяется при этом по формуле:

где R 0 – сопротивление заземления нейтрали источника тока, Ом .

Сопротивление заземляющего устройства, к которому присоединена нейтраль источника тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В . Это сопротивление должно быть обеспечено с учётом использования естественных заземлителей, а также заземлителей повторных заземлений PEN - или PE -проводника воздушных линий электропередач (ВЛ) напряжением до 1 кВ . Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали источника тока, должно быть не более 15, 30 и 60 Ом соответственно при тех же линейных напряжениях 660, 380 и 220 В .

Пример . В наиболее неблагоприятной ситуации, рассмотренной выше, при U ф = 220 В , R h = 1000 Ом , R п ~ 0 Ом R 0 = 30 Ом сила тока, протекающего через тело человека, составит:

I h = 220/1000 + 30 = 0,214 А (214 мА ), что смертельно опасно для человека.

Если обувь не токопроводящая (например, резиновые галоши с сопротивлением 45 кОм ) и человек стоит на не токопроводящем полу (например, деревянный пол с сопротивлением 100 кОм ), т.е. R п = 145 кОм , то сила тока, протекающего через тело человека, составит:

I h = 220/1000 + 60 + 145000 = 0,0015 А (1,5 мА ), что опасности для человека не представляет.

Таким образом, при прочих равных условиях прикосновение человека к одному фазному проводу электросети сети с изолированной нейтралью менее опасно, чем в электросети с заземлённой нейтралью.

Рассмотренные выше схемы включения человека в электрическую цепь трёхфазного переменного тока справедливы для нормальных (безаварийных) условий работы электрических сетей.

В аварийном режиме работы трёхфазной электрической сети переменного тока один из фазных проводов, например, электросети с заземлённой нейтралью (в системе TN ) может быть замкнут на землю (при срабатывании системы защитного заземления, падении фазного провода на землю и т.п.) через сопротивление R зм (рис. 6).

Рис. 6. Однофазное (однополюсное) прикосновение к токоведущим частям в аварийном режиме работы электросети.

R зм – сопротивление замыкания фазного провода (L 2 ) на землю.

Сила тока, проходящего через тело человека, касающегося в этой ситуации одного из исправных фазных проводов (L 1 , L 3 ), определяется из уравнения

где R зм – сопротивление замыкания фазного провода на землю, Ом .

Если при этом R зм ~ 0 или намного меньше и R 0 R h , то им можно пренебречь, тогда сила тока, проходящего через тело человека, будет определяться по формуле

т. е. человек будет включаться в электрическую цепь двухфазно, причём вторая фаза подключается к нему через ноги и на величину I h будет оказывать существенное влияниепереходное сопротивление R п .

При напряжениях до 1000 В в производственных условиях широкое распространение получили обе рассмотренные выше схемы трехфазных электрических сетей переменного тока: трёхпроводная с изолированной нейтралью (система IT ) и четырёхпроводная с заземлённой нейтралью (система TN ).

Электрическую сеть с изолированной нейтралью целесообразно применять в тех случаях, когда имеется возможность поддерживать высокий уровень сопротивления изоляции фазных проводов и незначительную ёмкость последних относительно земли. Такими являются электрические сети малоразветвлённые, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала. Так, например, в угольных шахтах используются только электросети с изолированной нейтралью.

Электрическую сеть с заземлённой нейтралью следует применять там, где невозможно обеспечить хорошую изоляцию проводов (например, из-за высокой влажности или агрессивной среды), когда нельзя быстро отыскать или устранить повреждение изоляции, либо когда ёмкостные токи электросети вследствие значительной её разветвлённости достигают больших значений, опасных для человека.

При напряжении выше 1000 В по технологическим причинам электрические сети напряжением до 35 кВ включительно имеют изолированную нейтраль, свыше 35 кВ – заземлённую. Поскольку такие электросети имеют большую ёмкость проводов относительно земли, для человека одинаково опасным является прикосновение к их фазным проводам независимо от режима работы нейтрали энергоисточника. Поэтому режим работы нейтрали электросети напряжением выше 1000 В по условиям безопасности не выбирается.

ЭЛЕКТРОБЕЗОПАСНОСТЬ - ОСОЗНАННАЯ НЕОБХОДИМОСТЬ

Евгений Иванов, сопредседатель проблемного комитета "Электробезопасность" Международной академии наук экологии и безопасности жизнедеятельности, д. т. н., профессор кафедры безопасности жизнедеятельности СПГЭТУ "ЛЭТИ"

В прошлом номере нашего журнала мы начали разговор об основах электробезопасности в свете современных требований. Были рассмотрены виды действия электрического тока на организм человека и первые две возможные схемы включения человека в цепь тока: двухполюсное и однополюсное прикосновение. Сейчас речь пойдет о следующих типовых схемах поражения электрическим током.

ОСТАТОЧНЫЙ ЗАРЯД

Под остаточным понимается заряд на конденсаторе, сохраняющийся некоторое время после отключения источника питания. Схема включения человека в электрическую цепь формируется при прикосновении его к одной из обмоток конденсатора.

Условия формирования цепи
Всякая сеть или устройство обладают емкостью относительно земли (корпуса) и между полюсами (фазами).
Если сопротивление изоляции велико, то после снятия рабочего напряжения либо после измерений мегомметром потенциал на токо-ведущих частях, обусловленный остаточным зарядом емкости, может сохраняться длительное время. В случае прикосновения человека к токоведущей части при этом возникает переходный процесс разряда емкостей через его тело.
Процессы, аналогичные указанным, происходят также при работе в цепях с индуктивностями. Так, согласно Правилам эксплуатации электроустановок, необходимо ежегодно отключать силовые трансформаторы и контролировать омическое сопротивление их обмоток.
В переносных омметрах обычно применяют источники постоянного напряжения 4-6 В. При отключении омметра, например, от обмотки низкого напряжения в процессе разряда ее индуктивности импульс тока трансформируется в обмотку высокого напряжения. Если в этот момент человек касается полюса последней, то вторичная травма неизбежна.

Возможные последствия действия остаточного заряда
Рассмотрим эту схему травмирования током на примере однофазной сети.

Обозначения на схеме: Rh - сопротивление тела человека, R, и R2, С, и С2 - эквивалентные сопротивления изоляции и емкости полюсов относительно земли, С12 -эквивалентная емкость между полюсами (в том числе конденсаторов фильтров выпрямителей), U0 -остаточное напряжение.
Принимаем (R,R2) > Rh, что правомерно, так как при низких значениях сопротивления изоляции остаточный заряд быстро исчезает и сеть, с точки зрения возможности поражения человека током, становится безопасной.
Упрощаем расчетную схему путем разделения емкости С12 на две последовательно включенные емкости значением 2 С12 каждая (рис.б). Окончательная расчетная схема (рис.в) позволяет определить ток разряда емкости С, + 2 С12 через сопротивление Rh при начальном напряжении 11^2 по известной формуле:
lh = U0exP(-t/Rh(Cl + 2C12))/2Rh.
Таким образом, максимальное значение тока lh определяется величиной остаточного напряжения U0 и сопротивления тела человека, а длительность переходного процесса зависит от величины емкостей относительно земли и между полюсами сети.
Обычный результат действия остаточного заряда - вторичные травмы.

Защитные мероприятия
Из формулы для lh следует одно из основных правил техники безопасности: после снятия рабочего напряжения не берись за токоведущие части, предварительно не разрядив емкости.
Для разряда емкостей следует присоединить провод разрядника(щупа) к заземленной конструкции (детали) и затем коснуться щупом токоведущей части.
Изменять указанную последовательность операций нельзя, так как в этом случае ток разряда пройдет через тело человека.

ЗАРЯД СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА
Схема включения человека в цепь
В этом режиме человек прикасается к металлическому предмету, изолированному от земли, или к конструкции из изоляционного материала, несущим заряд статического электричества. Возможен также режим прикосновения к заземленной металлической конструкции, когда человек находится на полу из изоляционного материала и сам несет заряд статического электричества.
Условия формирования цепи
Заряды статического электричества образуются при перемещении (трении) твердых, жидких или газообразных диэлектриков относительно других проводящих или непроводящих ток материалов.
Возможные последствия действия статического электричества
Возможность формирования зарядов статического электричества существенно увеличилась с массовым применением пластических материалов (трубопроводы, покрытие полов и пр.), обладающих высоким сопротивлением.
Заряды статического электричества генерируют высокие потенциалы. Так, при перекачке топлива, например, при заливке бензина в бак автомобиля, заряд Qст получает латунный наконечник резинового шланга. Потенциал его относительно земли (или бака) будет Uст = Qст/С =1,5 ё 14кВ зависимости от скорости прокачки (здесь С - емкость наконечника относительно земли или бака - величина бесконечно малая). При прикосновении человека к такому заряженному предмету возможны вторичные травмы или ожог искрой.
Тело человека относительно земли имеет емкость около 200 пФ. Если он находится на изолирующем полу (линолеум), то в результате трения одежды о кожу на нем может накопиться заряд с энергией до 0,43 мДж. Отсюда из известного выражения для энергии заряженного конденсатора получаем, что значение потенциала тела относительно земли превышает 500 В; в случае прикосновения к заземленному металлическому предмету (батарея отопления, шкафчик с рабочей одеждой и пр.) человек почувствует удар током (ток разряда собственной емкости).
Такие заряды наибольшую опасность представляют для элементов микросхемотехники при монтаже печатных плат. Обычно во избежание выхода их из строя жало паяльника заземляют либо на руку монтажницы надевают заземленный браслет; наиболее эффективная мера - обязательная замена одежды на хлопчатобумажную, исключающую возможность генерирования электростатического заряда.
Основные виды разрядов статического электричества:
а) разряды между проводящими телами – формируются в результате электризации и накопления заряда на изолированных проводящих телах (человек, металлическая тара для жидкостей и сыпучих материалов, транспортные средства на резиновых шинах, гребные валы на судах и пр.);
б) разряды с заряженного ди-электрика на проводящие конструкции (резиновые либо пластмассовые резервуары; бочки и канистры для хранения и транспортировки нефтепродуктов и сыпучих материалов; диэлектрические трубы, по которым перемещаются эти материалы, и т.п.);
в) коронирование диэлектриков - разряд, обусловленный разностью потенциалов между внутренней и наружной поверхностями конструкции (трубы для транспортировки жидких и сыпучих материалов, пневмотранспортные трубопроводы);
г) разряды в следе скольжения - возникают в процессе электризации твердых поверхностей путем трения.
Защитные мероприятия
Защита обеспечивается путем формирования цепей для снятия зарядов статического электричества (заземление металлоконструкций, снижение омического сопротивления изоляционных материалов путем введения в них проводящих примесей, периодического обливания изоляционных конструкций проводящими жидкостями и т.п.).
Пример: При обезжиривании металлических деталей случай загорания от электрического разряда произошел в условиях, когда, казалось бы, все меры защиты от статического электричества были соблюдены. Ванна с бензином заземлена. Полы в помещении и обувь рабочих обладали электропроводностью, соответствующей нормативным требованиям. Но тем не менее, при погружении металлических деталей в ванну произошло загорание. Причиной его был разряд с одежды, так как шерстяная одежда сочеталась с одеждой из вискозного шелка, что недопустимо.

НАПРЯЖЕНИЕ ШАГА
Схема включения человека в цепь
Действию напряжения шага человек подвергается в зоне растекания тока, то есть на поверхности земли вблизи места замыкания на землю. Условия формирования цепи
В зоне растекания тока, в соответствии с выражением j(х) = k/x, различны потенциалы всех точек на поверхности земли.

Напряжением шага называется разность потенциалов двух точек поверхности земли, на которых находится человек, при этом в расчетах ширина шага принимается равной а = 0,8 м.
Возможные последствия действия напряжения шага
Напряжение шага зависит от двух основных факторов - максимального потенциала в зоне растекания тока j зами удаления человека от места замыкания (х).

В наиболее удаленных точках зоны растекания тока напряжение шага невелико, а ток через тело человека Ih = Uш/Rh протекает по пути «нога-нога». По мере возрастания напряжения Uш при приближении человека к месту замыкания ток возрастает и может в итоге достичь значения порогового неотпускающего тока; в результате судорожной реакции человек падает, при этом размер «шага» увеличивается (расстояние стало «руки-ноги») с соответствующим возрастанием значения Uш, а в путь тока включается область сердца. Так без видимых внешних причин может наступить летальный исход.
Пример: «Сильнее огня» («Правда», 23 августа 1987 г.).
Обстоятельства таковы: комбайн «Колос» коснулся выхлопной трубой провисшего провода ЛЭП и оборвал его. От искр загорелись валки скошенной пшеницы, огонь грозил и комбайну. Николай бросился тушить его. «Он бросился, как солдат в атаку, и упал, как подкошенный пулей». На могильном памятнике надпись: «Николай Васильевич Барсуков. 1953-1987. Погиб в борьбе за хлеб».

ЭЛЕКТРИЧЕСКИЙ ПРОБОЙ ВОЗДУШНОГО ПРОМЕЖУТКА
Схема включения человека в цепь
Эта схема поражения током характерна для высоковольтных цепей.
В равномерном электрическом поле (например, между обкладками плоского конденсатора) электрическая прочность воздушного промежутка равна 3-4 кВ/мм в зависимости от влажности воздуха.
То есть электрический пробой воздушного промежутка размером 1 мм происходит при напряжении 3-4 кВ между обкладками конденсатора.
Когда человек той или иной частью тела приближается к высоковольтной токоведущей части, в воздушном зазоре также формируется электрическое поле, но это поле неравномерное, типа игла-плоскость либо игла-линия. Электрическая прочность воздушного промежутка в неравномерном поле существенно ниже, она может уменьшаться до значения 4 кВ/см.
Условия формирования цепи Пусть человек проник в трансформаторную будку 6/0,38 кВ и приблизил палец к токоведущей части, находящейся под потенциалом 6 кВ.
Потенциал тела человека равен потенциалу земли (ноль), поэтому разность потенциалов в воздушном зазоре «палец - токоведущая часть» составляет 6 кВ. При таком напряжении происходит электрический пробой воздушного промежутка и формируется дуговой разряд. При неблагоприятных условиях, когда цепь тока не прерывается, термическую травму завершает биологическое поражение током.
Возможные последствия электрического пробоя воздушного промежутка
При дуговом разряде (ожоге дугой) разрушаются кожные покровы, мышечная и костная ткани.
Защитные мероприятия
Защита людей от опасности рассматриваемого режима достигается путем обеспечения недоступности токоведущих частей оборудования.

Так как от сопротивления электрической цепи R существен­но зависит величина электрического тока, проходящего через человека, то тяжесть поражения во многом определяется схемой включения человека в цепь. Схемы образующихся при контакте человека с проводником цепей зависят от вида применяемой системы электроснабжения.

Наиболее распространены электрические сети, в которых ну­левой провод заземлен, т. е. накоротко соединен проводником с землей. Прикосновение к нулевому проводу практически не представляет опасности для человека, опасен только фазный провод. Однако разобраться, какой из двух проводов нулевой, сложно - по виду они одинаковы. Разобраться можно используя специальный прибор - определитель фазы.

На конкретных примерах рассмотрим возможные схемы включения человека в электрическую цепь при прикосновении к проводникам.

Двухфазное включение в цепь. Наиболее редким, но и наиболее опасным, является прикосновение человека к двум фазным про­водам или проводникам тока, соединенным с ними (рис. 2.29).

В этом случае человек окажется под действием линейного напряжения. Через человека потечет ток по пути «рука-рука», т. е. сопротивление цепи будет включать только сопротивление тела (Д,).




Если принять сопротивление тела в 1 кОм, а электрическую сеть напряжением 380/220 В, то сила тока, проходящего через че­ловека, будет равна

Это смертельно опасный ток. Тяжесть электротравмы или даже жизнь человека будет зависить прежде всего от того, как быстро он освободится от контакта с проводником тока (разо­рвет электрическую цепь), ибо время воздействия в этом случае является определяющим.

Значительно чаще встречаются случаи, когда человек одной рукой соприкасается с фазным проводом или частью прибора, аппарата, который случайно или преднамеренно электрически соединен с ним. Опасность поражения электрическим током в этом случае зависит от вида электрической сети (с заземленной или изолированной нейтралью).

Однофазное включение в цепь в сети с заземленной нейтралью (рис. 2.30). В этом случае ток проходит через человека по пути «рука-ноги» или «рука-рука», а человек будет находиться под фазным напряжением.

В первом случае сопротивление цепи будет определяться со­противлением тела человека (I_, обуви (R o 6), основания (R ж), на котором стоит человек, сопротивлением заземления нейтрали (R H), и через человека потечет ток

Сопротивление нейтрали R H невелико, и им можно пренебречь по сравнению с другими сопротивлениями цепи. Для оцен­ки величины протекающего через человека тока примем напря­жение сети 380/220 В. Если на человеке надета изолирующая су­хая обувь (кожаная, резиновая), он стоит на сухом деревянном полу, сопротивление цепи будет большим, а сила тока по закону Ома небольшой.

Например, сопротивление пола 30 кОм, кожаной обуви 100 кОм, сопротивление человека 1 кОм. Ток, проходящий через человека

Этот ток близок к пороговому ощутимому току. Человек по­чувствует протекание тока, прекратит работу, устранит неис­правность.

Если человек стоит на влажной земле в сырой обуви или боси­ком, через тело будет проходить ток

Этот ток может вызвать нарушение в работе легких и сердца, а при длительном воздействии и смерть.

Если человек стоит на влажной почве в сухих и целых резино­вых сапогах, через тело проходит ток

Воздействие такого тока человек может даже не почувство­вать. Однако даже небольшая трещина или прокол на подошве сапога может резко уменьшить сопротивление резиновой по­дошвы и сделать работу опасной.

Перед тем как приступить к работе с электрическими устройствами (особенно длительное время не находящимися в эксплуатации), их необходи­мо тщательно осмотреть на предмет отсутствия повреждений изоляции. Электрические устройства необходимо протереть от пыли и, если они влажные - просушить. Мокрые электрические устройства эксплуатиро­вать нельзя! Электрический инструмент, приборы, аппаратуру лучше хра­нить в полиэтиленовых пакетах, чтобы исключить попадание в них пыли или влаги. Работать надо в обуви. Если надежность электрического уст­ройства вызывает сомнения, надо подстраховаться - подложить под ноги сухой деревянный настил или резиновый коврик. Можно использовать рези­новые перчатки.

Второй путь протекания тока возникает тогда, когда второй рукой человек соприкасается с электропроводящими предмета­ми, соединенными с землей (корпусом заземленного станка, ме­таллической или железобетонной конструкцией здания, влажной деревянной стеной, водопроводной трубой, отопительной бата­реей и т. п.). В этом случае ток протекает по пути наименьшего электрического сопротивления. Указанные предметы практически накоротко соединены с землей, их электрическое сопротив­ление очень мало. Поэтому сопротивление цепи равно сопро­тивлению тела и через человека потечет ток

Эта величина тока смертельно опасна.

При работе с электрическими устройствами не прикасайтесь второй рукой к предметам, которые могут быть электрически соединены с землей. Работа в сырых помещениях, при наличии вблизи от человека хорошо прово­дящих предметов, соединенных с землей, представляет исключительно вы­сокую опасность и требует соблюдения повышенных мер электрической безопасности.

В аварийном режиме (рис. 2.30, б), когда одна из фаз сети (другая фаза сети, отличная от фазы, к которой прикоснулся че­ловек) оказалась замкнутой на землю, происходит перераспреде­ление напряжения, и напряжение исправных фаз отличается от фазного напряжения сети. Прикасаясь к исправной фазе, чело­век попадает под напряжение, которое больше фазного, но меньше линейного. Поэтому при любом пути протекания тока этот случай более опасен.

Однофазное включение в цепь в сети с изолированной нейтра­лью (рис. 2.31). На производстве для электроснабжения силовых электроустановок находят применение трехпроводные электри­ческие сети с изолированной нейтралью. В таких сетях отсутст­вует четвертый заземленный нулевой провод, а имеются только три фазных провода. На этой схеме прямоугольниками условно показаны электрические сопротивления r А, r в , r с изоляции про­вода каждой фазы и емкости С А, С в, С с каждой фазы относи__________________________

находящимися под значительно большими напряжениями, а значит, и более опасными. Однако основные выводы и рекомен­дации для обеспечения безопасности практически такие же.

Даже если не учитывать сопротивление цепи человека (человек стоит на влажной земле в сырой обуви), проходящий через человека ток будет безопасен:

Таким образом, хорошая изоляция фаз является залогом обеспечения безопасности. Однако при разветвленных электри­ческих сетях добиться этого нелегко. У протяженных и разветв­ленных сетей с большим числом потребителей сопротивление изоляции мало, и опасность возрастает.

Для протяженных электрических сетей, особенно кабельных линий, емкостью фаз нельзя пренебрегать (CV0). Даже при очень хорошей изоляции фаз (г=оо) ток потечет через человека через емкостное сопротивление фаз, и его величина будет опре­деляться по формуле:

Таким образом, протяженные электрические цепи промыш­ленных предприятий, обладающие высокой емкостью, обладают высокой опасностью, даже при хорошей изоляции фаз.

При нарушении же изоляции какой-либо фазы прикоснове­ние к сети с изолированной нейтралью становится более опас­ным, чем к сети с заземленным нулевым проводом. В аварийном режиме работы (рис. 2.31, б) ток, проходящий через человека, прикоснувшегося к исправной фазе, будет стекать по цепи за­мыкания на земле на аварийную фазу, и его величина будет оп­ределяться формулой:

Так как сопротивление замыкания Д, аварийной фазы на земле обычно мало, то человек будет находиться под линейным напряжением, а сопротивление образовавшейся цепи будет рав­но сопротивлению цепи человека ____, что очень опасно.

По этим соображениям, а также из-за удобства использова­ния (возможность получения напряжения 220 и 380 В) четырех-проводные сети с заземленным нулевым проводом на напряже­ние 380/220 В получили наибольшее распространение.

Мы рассмотрели далеко не все возможные схемы электриче­ских сетей и варианты прикосновения. На производстве вы мо­жете иметь дело с более сложными схемами электроснабжения, тельно земли.

Для упрощения анализа примем г А - г в = г с = г, а С А = L B = С с = С

Если человек прикоснется к одному из проводов или к како­му-нибудь предмету, электрически соединенному с ним, ток по­течет через человека, обувь, основание и через изоляцию и ем­кость проводов будет стекать на два других провода. Таким обра­зом, образуется замкнутая электрическая цепь, в которую, в отличие от ранее рассмотренных случаев, включено сопротивле­ние изоляции фаз. Так как электрическое сопротивление ис­правной изоляции составляет десятки и сотни килоом, то общее электрическое сопротивление цепи значительно больше сопро­тивления цепи, образующейся в сети с заземленным нулевым проводом. Т. е. ток через человека в такой сети будет меньше, и прикосновение к одной из фаз сети с изолированной нейтралью безопаснее.

Ток через человека в этом случае определяется по следую­щей формуле:

где- электрическое сопротивление цепи человека,

со = 2я - круговая частота тока, рад/с (для тока про­мышленной частоты= 50 Гц, поэтому со = ЮОл).

Если емкость фаз невелика (это имеет место для непротя­женных воздушных сетей), можно принять С« 0. Тогда выраже­ние для величины тока через человека примет вид:

Например, если сопротивление пола 30 кОм, кожаной обуви 100 кОм, сопротивление человека 1 кОм, а сопротивление изоляции фаз 300 к Ом, ток, который проходит через человека (для сети 380/220 В), будет равен

Такой ток человек может даже не почувствовать.

Контрольные вопросы

1. Какие типы электрических сетей наиболее распространены на произ­водстве?

2. Назовите источники электрической опасности на производстве.

3. Что такое напряжение прикосновения и шаговое напряжение? Как за­висят их величины от расстояния от точки стекания тока в землю?

4. Как классифицируются помещения по степени электрической опасности?

5. Как воздействует электрический ток на человека? Перечислите и оха­рактеризуйте виды электротравм.

6. Какие параметры электрического тока определяют тяжесть пораже­ния электрическим током? Укажите пороговые величины силы тока.

7. Какой путь протекания электрического тока через тело человека наи­более опасен?

8. Укажите источники наибольшей электрической опасности на произ­водстве, связанном с вашей будущей профессией.

9. Сделайте анализ опасности электрических сетей с заземленной ней­тралью.

10.Дайте анализ опасности электрических сетей с изолированной ней­тралью.

11.Какое прикосновение к проводникам, находящимся под напряжени­ем, наиболее опасно для человека?

12.Почему прикосновение рукой к предметам электрически соединен­ным с землей (например, водопроводной трубой) при работе с элек­трическими устройствами резко увеличивает опасность поражения электрическим током?

13.Почему при ремонте электрической аппаратуры нужно вынимать электрическую вилку из розетки?

14.Почему при работе с электрическими устройствами необходимо на­девать обувь?

15.Как можно уменьшить опасность поражения электрическим током?