Счетчик гейгера из шприца. Счетчик Гейгера: мастер-класс создания своими руками из подручных средств

Инструкция

Приобретите счетчик для дозиметра. Желательно, чтобы он был рассчитан на напряжение питания, равное 400 вольтам, поскольку большинство схем самодельных приборов рассчитано на именно таких датчиков. Из отечественных наиболее подходящим является СБМ-20. А вот довольно распространенный счетчик типа СТС-5 применять нежелательно: при аналогичных параметрах он сильно СБМ-20 по долговечности.

Поскольку описанные на данной странице преобразователи рассчитаны на работу 500-вольтными счетчиками, для работы с 400-вольтным прибором придется изменить настройку цепи обратной связи либо взять другое сочетание стабилитронов и неоновых ламп в этой цепи (в зависимости от выбранной схемы).

Напряжение на выходе преобразователя измерьте вольтметром с входным сопротивлением не менее 10 МОм. Убедитесь, что оно действительно равно 400 В. Помните, что даже при столь малой мощности оно может представлять опасность для наличия в схеме заряженных .

Изготовив преобразователь и убедившись, что он работоспособен, соберите измерительный узел дозиметра. Его схему выберите в зависимости от того, на какое входное напряжение рассчитан преобразователь. Подключите его к преобразователю, предварительно отключив его питание и разрядив накопительный конденсатор.

Готовый дозиметр поместите в корпус. Он должен исключать прикосновение к цепям, в которых напряжение, но иметь ряд тонких отверстий вблизи счетчика для прохождения к нему бета-лучей.Помните, что альфа- самодельный дозиметр обнаружить не способен.

Если в минуту регистрируется не более тридцати пяти импульсов, радиационный фон можно считать нормальным. Обнаружив же любой излучающий объект, немедленно обратитесь для его утилизации в ГУП МосНПО «Радон» по телефонам или адресам электронной почты, указанным на следующей странице:
http://www.radon.ru/contakt.htm

Видео по теме

Для измерения фона радиоактивного излучения и определения наличия жесткого ионизирующего излучения необходимы специальные приборы. Простейший счетчик Гейгера – Мюллера можно собрать своими руками. Точные количественные значения излучения определить он не сможет, но появление вблизи источника жесткого ионизирующего излучения определит.

Вам понадобится

  • датчик СБТ9, транзистор КТ630Б, резисторы на 24 кОм и 7.5 мОм, 2 электролитических конденсатора, 470 микрофарад на 16 Вольт и 2.2 микрофарада на 16 Вольт. Так же потребуются конденсатор емкостью 2200 пикофарад на напряжение не меньше 1 киловольт и 2 диода КД102А. В качестве источника питания можно применить любую батарею на 9 Вольт. Для сигнализации используется плоский пьезокерамический излучатель от детской игрушки или телефона – трубки.

Инструкция

Самая сложная часть этого счетчика – импульсный трансформатор. Намотайте трансформатор на броневом магнитопроводе из феррита марки 2000НМ. Вторичную обмотку виток к витку намотайте проводом диаметром 0,08 мм 3 слоями по 180 витков, (чтобы исключить межвитковой пробой). Для первичной обмотки намотайте 13 витков, сделайте отвод от верхнего края на 5-м витке.

Если собрать вышеописанный прибор для вас слишком сложно, то можно ограничиться еще более простой моделью счетчика Гейгера. Для этого, просто возьмите стартер, используемый в люминесцентных пампах и подключите его к электросети 220В последовательно с лампой накаливания мощностью 15 ватт. Это можно назвать простейшим счетчиком Гейгера.
Чтобы оценить уровень бета и гамма излучения, посчитайте количество вспышек лампы в минуту. Количество вспышек будет пропорционально уровню . Если имеется возможность достать на небольшое время настоящий счетчик Гейгера, то измерьте им уровень радиации. Одновременно посчитайте количество вспышек самодельного прибора. Затем разделите показания счетчика на количество вспышек лампы в минуту. Запишите полученное число. Теперь, посчитав количество вспышек в минуту и умножив его на это число, вы получите значение уровня радиации.

Видео по теме

Обратите внимание

Обратите внимание на правильность подключения выводов первичной обмотки трансформатора. При подключенном к счетчику питании соблюдайте осторожность – в генераторе есть опасное для жизни и здоровья напряжение! Тщательно изолируйте оголенные выводы высоковольтной части генератора.

Современные счетчики Гейгера называют дозиметрами радиации и радиометрами. Они позволяют определить уровень радиационного излучения окружающей среды еще до того, как он успеет сказаться на вашем здоровье.

С помощью современного счетчика Гейгера можно измерить уровень радиации строительных материалов, земельного участка или квартиры, а также продуктов питания. Он демонстрирует практически стопроцентную вероятность заряженной частицы, ведь для ее фиксирования достаточно всего одной пары электрон-ион.

Технология, на основе которой создан современный дозиметр на базе счетчика Гейгера-Мюллера, позволяет получать результаты высокой точности за очень короткий промежуток времени. На измерение требуется не больше 60 секунд, а вся информация выводится в графическом и числовом виде на экране дозиметра.

Настройка прибора

У прибора есть возможность настройки порогового значения, когда он превышен, издается звуковой сигнал, предупреждающий вас об опасности. Выберите одно из заданных значений порога в соответствующем разделе настроек. Звуковой сигнал также можно отключить. Перед проведением измерений рекомендуют провести индивидуальную настройку прибора, выбрать яркость дисплея, параметры звукового сигнала и элементов питания.

Порядок выполнения измерений

Выберите режим «Измерение», при этом прибор начинает оценку радиоактивной обстановки. Примерно через 60 секунд на его дисплее появляется результат измерений, после чего начинается следующий цикл анализа. Для того чтобы получить точный результат, рекомендуют провести не менее 5 циклов измерений. Увеличение числа наблюдений дает более достоверные показания.

Чтобы измерить радиационный фон предметов, например стройматериалов или пищевых продуктов, нужно включить режим «Измерение» на расстоянии нескольких метров от объекта, затем поднести прибор к предмету и измерить фон максимально близко к нему. Сравните показания прибора с данными, полученными на расстоянии нескольких метров от предмета. Разница между этими показаниями - это дополнительный радиационный фон исследуемого объекта.

Если результаты измерений превышают естественный фон, характерный для той местности, в которой вы находитесь, это свидетельствует о радиационном загрязнении исследуемого объекта. Для оценки загрязнения жидкости рекомендуют проводить измерения над ее открытой поверхностью. Чтобы защитить прибор от влаги, его нужно обернуть полиэтиленовой пленкой, но не более чем в один слой. Если дозиметр длительное время находился при температуре ниже 0оС, перед проведением измерений его необходимо выдержать при комнатной температуре в течение 2 часов.

Счетчик Гейгера-Мюллера - это относительно простой инструмент для измерения . В магазинах эти дозиметры стоят недёшево (от 5000 руб), но если есть сам датчик, то сделать этот измеритель можно с минимальными расходами. Чтобы увеличить чувствительность, представленная здесь конструкция содержит сразу три датчика СТС-5. Это полезно для измерения природных источников с низким уровнем излучения - почва, камни, вода.

Принцип работы счетчика Гейгера-Мюллера заключается в том, что высокое напряжение (обычно 400 В) подаётся на колбу-детектор. Она не проводит электричество, но в течение короткого периода, когда приходит излучение частиц, через неё проскакивает импульс тока. Уровень ионизирующего излучения пропорционален количеству импульсов, обнаруженных за постоянный интервал времени.

Сам счетчик Гейгера-Мюллера (детектор) состоит из двух электродов, а ионизирующая частица создает искровой промежуток между ними. Чтобы уменьшить величину тока, который при этом протекает, высокоомный резистор ставят последовательно с трубкой. Обозначены как R1 на схеме. Обычно он выбирается в диапазоне 1-10 мегаом, допустимые значения указаны в документации к счётчику Гейгера.

Есть разные способы получения данных из детектора, в представленной здесь схеме, резистор последовательно соединен между трубкой и землей, а изменения напряжения на резисторе измеряется с помощью детектора. Этот резистор обозначен как R2 на схеме. Обычно он в диапазоне 10-220 килоом. Аналогично диодам, счетчик Гейгера-Мюллера имеет свою полярность и при подключении в обратном направлении он будет работать неправильно.

Электрическая схема счетчика Гейгера-Мюллера

Здесь микросхема MC34063 - это DC/DC преобразователь, который используется для получения необходимого высокого напряжения из низкого батареечного. Главное его преимущество по сравнению с простой м/с NE555 или аналогичными генераторами заключается в том, что он может контролировать выходное напряжение и подстраивает параметры, чтобы сделать его стабильным (R3, R4, R5, С3). Элементы ОУ IC1A, R8, R9 используются как компаратор, чтобы отфильтровать шумы и сформировать двоичный сигнал (низкий = нет импульса, высокий = импульс проходит).

Внимание! Устройство использует высокое напряжение и может привести к неприятным последствиям при касании к некоторым токонесущим элементам конструкции. Не прикасайтесь к печатной плате или трубке датчика при включении питания.

Запуск и настройка измерителя

Напряжение на С4 должны быть в приемлемом диапазоне для работы Гейгера. Обычно около 400 В - будьте осторожны во время измерений! Если напряжение выходит за диапазон, то элементы С1 (частота преобразователя постоянного тока), и С3, R3, R4, R5 (обратная связь по напряжению преобразователя) могут быть скорректированы.

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Счетчик Гейгера своими руками



Мысль приобрести счетчик Гейгера появилась у меня давно, как говорится, на всякий случай.
Но посмотрев на цены готовых приборов, желание пропало:)
Так же несколько раз натыкался в интернете на схемы приборов, но подходящий для себя так и не нашел.
...и вот, однажды, почитав какой то форум, о том, как много всяких радиоактивных вещей может нас окружать, о которых мы даже и не догадываемся, желание иметь под рукой подобный прибор появилось вновь.
Для этого было решено разработать собственный прибор.

Ниже расположена схема счетчика Гейгера на микроконтроллере PIC 16F84, печатная плата в PCAD"е и прошивка микроконтроллера.

Характеристики прибора:
Питание: 9 В
Потребляемый ток без подсветки ЖКИ: 7 мА
с подсветкой ЖКИ: 11 мА (зависит от яркости)
Диапазон измерений: 0 мкР - 144 мР (предел счетчика СБМ-20)

ЖКИ пришлось заказвыать, т.к. в магазинах подходящих по габаритам не оказалось. Для этих целей оптимально подходит 8 символьный 2 строчный ЖКИ на базе контроллера HD44780.
В принципе, должен подойти любой 2х строчный ЖКИ на базе контроллера HD44780

Повышающий трансформатор намотан на ферритовом кольце 16х10х4.5

Обмотка I - 420 витков провода ПЭВ 0.1
Обмотка II - 8 витков провода ПЭВ 0.15 - 0.25
Обмотка III - 3 витка провода ПЭВ 0.15 - 0.25

В качестве корпуса использован цифровой мультиметр DT-830. Дешевле оказалось купить мультиметр ради его корпуса, чем покупать корпус отдельно:)

Небольшая доработка

Вынимаем потроха, удаляем наклейку, канцелярским ножом и напильником доводим до совершенства.
Так же сверлим необходимые отверстия:

При проектировании я не учел одну вещь - найти малогабаритную кнопку и выключатель для крепления на корпусе оказалось непросто.
Поэтому пришлось сделать дополнительно небольшую печатку для монтажа выключателя от неисправного мультиметра, а кнопку закрепить хомутиком на внутренней стороне передней панели.

Проверка прибора:

Для начала проверяем правильность монтажа, подключение трансформатора и ЖКИ, а также полярность подключения счетчика СБМ-20.
Подаем питание.
ВНИМАНИЕ! В схеме присутствует высокое напряжение!
На конденсаторе С1 должно быть напряжение не менее 200 вольт (при измерении цифровым мультиметром, т.к его внутреннее сопротивление не достаточно высоко, происходит падение напряжения, на самом деле на конденсаторе С1 должно быть около 350 вольт!).

На ЖКИ появляется текст:

После инициализации, на дисплее отображаются показания эквивалентной дозы радиации. В среднем, около 14-22 мкР, но может быть и более.
В дальнейшем, каждую секунду происходит обновление показаний, с уточнением средней эквивалентной дозы радиации за единицу времени.

Далее нужно проверить, что счетчик действительно работает, и может показывать что нибудь большее, чем естественный радиационный фон.
Для этого в магазине удобрений можно купить "нитрат калия" (KNO3). В KNO3 содержится его радиоактивный изотоп, на который должен реагировать прибор.

Емкость с KNO3 необходимо расположить максимально близко к чувствительной стороне прибора (там, где находится счетчик СБМ-20).

Опять же, результат может быть разный, но показания должны быть существенно выше естественного фона.



Вы когда-нибудь хотели проверить уровень радиоактивности? Или может вы хотели подготовиться к ядерному Апокалипсису? Тогда этот мастер-класс по изготовлению счетчика Гейгера именно для вас. Я покажу вам, как сделать очень простой и дешевый счетчик Гейгера из старых и ненужных деталей бывших в эксплуатации. Видео о сборке и работе счетчика смотрите в конце моей статьи. Давайте начнем!

Как работает счетчик Гейгера?



Для начала, я объясню вам основы того, как все работает. В счетчике Гейгера используется специальная трубка, наполненная инертным газом при очень низком давлении для обнаружения радиации. Внутри этой трубки имеется цилиндрический кусок металла, который выступает в качестве катода. Внутри этого цилиндра есть небольшой металлический отрезок проволоки, который выступает в качестве анода. Когда высокое напряжение присутствует на аноде трубки, ничего не происходит, но когда в трубку попадают лучевые частиц, это вызывает ионизацию инертного раза, и он начинает проводить электрический ток. Этот ток можно измерить специальными приборами, но в этой схеме будет только детектирование сигнала о наличии радиационного излучения.

Схема счетчика Гейера


Счетчик Гейгера состоит из двух частей: высоковольтного источника питания - преобразователя и детектора. В вышеприведенной схеме высоковольтная цепь состоит из таймера 555, на котором построен генератор. Таймер 555 генерирует прямоугольные импульсы, которые через резистор открывает и закрывает транзистор периодически. Этот транзистор управляет небольшим повышающим трансформатор. С выходного трансформатора напряжение подается на удвоитель напряжения, где повышается примерно до 500 Вольт. Затем, напряжение стабилизируется с помощью стабилитронов до 400 вольт, необходимых для питания трубки счетчика Гейгера.
Детектор состоит из пьезо-электрического элемента, подключенного напрямую к ануду трубки без всяких усилителей.

Инструменты и детали






Чтобы выполнить этот проект, вам понадобятся различные инструменты и материалы.
Инструменты:
  • Кусачки.
  • Стриппер для зачистки проводов.
  • Паяльник.
  • Пистолет с горячим клеем.
Детали: большинство из них можно найти от старых электронных устройств.
  • Трансформатор 8:800 - это был трансформатор источника питания сломанного будильника.
  • Трубка Гейгера - куплена - .
  • Таймер 555.
  • Резисторы 47К (х2).
  • Конденсатор 22nF.
  • Конденсатор 2.2 nF.
  • Резистор 1К.
  • Любой N-канальный MOSFET.
  • Макетная плата.
  • 1n4007 диод(х2).
  • Конденсатор 100 нф на 500 вольт.
  • Стабилитроны - 100 вольт (х4)
  • Пьезоэлектрический элемент (из старой микроволновой печи).
  • Провода.
  • Припой.

Сборка генератора с транзистором MOSFET






После того как вы собрали свои инструменты и материалы самое время, чтобы перейти к пайке компонентов. Первая, что вам надо спаять это генератор и транзистор. Для этого каждый компонент на макетной плате установить наиболее эффективным образом. Например, припаять MOSFET рядом, где с трансформатором. Это поможет вам использовать меньше проводов при пайке. Как все детали смаяны между собой, обрезать излишки провода.

Припаиваем трансформатор и удвоитель напряжения со стабилизацией





После сборки генератора нужно припаять обмотку трансформатора с меньшим сопротивлением между MOSFET плюсом питания. Затем припаять выход трансформатора с высоковольтной обмотки к удвоителю. Затем, припаиваем все конденсаторы и стабилитроны. После спайки высоковольтный источник питания нужно проверить его с помощью вольтметра, чтобы увидеться, что он собран правильно и выдает нужное напряжение. Если у вас другая трубка Гейгера, не как у меня, посмотреть ее технические характеристики, чтобы узнать напряжение её питания, которое может отличаться. Затем добавите соответствующие стабилитроны.

Добавление трубку Гейгера и детектор




Заключительная часть и мне осталось добавить в схему саму трубку - счетчик и детектор. Начинаем припаивать провода к каждому концу трубки. Затем, припаиваем анод к выходу регулируемого источника питания и катодом к пьезоэлемента. Наконец, припаяем пьезоэлемент на общий провод. Благородя использованию детектора состоящего всего из двух компонентов это и считается простейший счетчик Гейгера. Большинство более сложных счетчиков содержать транзисторы в детекторе. Не надо никаких токоограничивающих резисторов в этом детекторе не требуется из-за очень незначительных токов.

Испытания





Наконец, настало время, чтобы проверить счетчиком Гейгера! Для этого сначала подключите счетчик к источнику питания. Затем, возьмите радиоактивный источник для проверки. С помощью плоскогубцев, удерживайте источник радиации рядом с трубкой Гейгера. Вы должны услышать несколько заметных щелчков, которые раздаются в пьезоэлементе. Это означает, что счетчик исправно работает. Чтобы услышать и увидеть это, смотреть видео. Спасибо за чтение!
Отказ от ответственности: этот проект работает с высоким напряжением, соблюдайте правила техники безопасности и работайте с осторожностью.

В связи с экологическими последствиями деятельности человека, связанной с атомной энергетикой, а также промышленностью (в том числе военной), использующую радиоактивные вещества как компонент или основу своей продукции изучение основ радиационной безопасности и радиационной дозиметрии становится сегодня достаточно актуальной темой. Помимо природных источников ионизирующего излучения с каждым годом все больше и больше появляется мест, загрязненных радиацией впоследствии человеческой деятельности. Таким образом, чтобы сохранить свое здоровье и здоровье своих близких необходимо знать степень зараженности той или иной местности или предметов и пищи. В этом может помочь дозиметр – прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени.

Прежде чем приступать к изготовлению (или же покупке) данного устройства необходимо иметь представление о природе измеряемого параметра. Ионизирующее излучение (радиация) – это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество. Разделяется на несколько видов. Альфа-излучение представляет собой поток альфа частиц – ядер гелия-4, альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги, поэтому опасность представляет в основном при попадании внутрь организма. Бета-излучение – это поток электронов, возникающих при бета-распаде, для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом, для защиты эффективны тяжелые элементы (свинец и т.п.) слоем в несколько сантиметров. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

Для регистрации ионизирующего излучения в основном используются счетчики Гейгера-Мюллера. Это простое и эффективное устройство обычно представляет собой цилиндр металлический или стеклянный металлизированный изнутри и тонкой металлической нити, натянутой по оси этого цилиндра, сам цилиндр наполняется разреженным газом. Принцип работы основан на ударной ионизации. При попадании на стенки счетчика ионизирующего излучения выбивают из него электроны, электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, приводящая к размножению первичных носителей. При достаточно большой напряженности поля энергии этих ионов становится достаточной, чтобы порождать вторичные лавины, способные поддерживать самостоятельный разряд, в результате чего ток через счетчик резко возрастает.

Не все счетчики Гейгера могут регистрировать все виды ионизирующего излучения. В основном они чувствительны к одному излучению – альфа, бета или гамма-излучению, но часто так же в некоторой степени могут регистрировать и другое излучение. Так, например, счетчик Гейгера СИ-8Б предназначен для регистрации мягкого бета-излучения (да, в зависимости от энергии частиц излучение может разделяться на мягкое и жесткое), однако данный датчик так же в некоторой степени чувствителен к альфа-излучению и к гамма-излучению.

Однако, приближаясь все-таки к конструкции статьи, наша задача сделать максимально простой, естественно портативный, счетчик Гейгера или вернее сказать дозиметр. Для изготовления этого устройства мне удалось раздобыть только СБМ-20. Этот счетчик Гейгера предназначен для регистрации жесткого бета- и гамма излучения. Как и большинство других счетчиков, СБМ-20 работает при напряжении 400 вольт.

Основные характеристики счетчика Гейгера-Мюллера СБМ-20 (таблица из справочника):

Данный счетчик обладает относительно невысокими показателями точности измерения ионизирующего излучения, но достаточными для определения превышения допустимой для человека дозы излучения. СБМ-20 применяется во многих бытовых дозиметрах в настоящее время. Для улучшения показателей часто используется сразу несколько трубок. А для увеличения точности измерения гамма-излучения дозиметры оснащаются фильтрами бета-излучения, в этом случае дозиметр регистрирует только гамма-излучение, но зато достаточно точно.

При измерении дозы радиации необходимо учитывать некоторые факторы, которые могут быть важны. Даже при полном отсутствии источников ионизирующего излучения счетчик Гейгера будет давать некоторое количество импульсов. Это так называемый собственный фон счетчика. Сюда так же относится несколько факторов: радиоактивное загрязнение материалов самого счетчика, спонтанная эмиссия электронов из катода счетчика и космическое излучение. Все это дает некоторое количество «лишних» импульсов в единицу времени.

Итак, схема простого дозиметра на основе счетчика Гейгера СБМ-20:

Схему собираю на макетной плате:

Схема не содержит дефицитных деталей (кроме, естественно, самого счетчика) и не содержит программируемых элементов (микроконтроллеров), что позволит собрать схему в течении короткого времени без особого труда. Однако такой дозиметр не содержит шкалы, и определять дозу радиации необходимо на слух по количеству щелчков. Такой вот классический вариант. Схема состоит из преобразователя напряжения 9 вольт – 400 вольт.

На микросхеме NE555 выполнен мультивибратор, частота работы которого составляет примерно 14 кГц. Для увеличения частоты работы можно уменьшить номинал резистора R1 примерно до 2,7 кОм. Это будет полезно, если выбранный вами дроссель (а может и изготовленный) будет издавать писк – при увеличении частоты работы писк исчезнет. Дроссель L1 необходим номиналом 1000 – 4000 мкГн. Быстрее всего можно найти подходящий дроссель в сгоревшей энергосберегающей лампочке. Такой дроссель и применен в схеме, на фото выше он намотан на сердечнике, которые обычно используют для изготовления импульсных трансформаторов. Транзистор T1 можно использовать любой другой полевой n-канальный с напряжением сток-исток не менее 400 вольт, а лучше больше. Такой преобразователь даст всего несколько миллиампер тока при напряжении 400 вольт, но для работы счетчика Гейгера этого хватит с головой несколько раз. После отключения питания от схемы на заряженном конденсаторе C3 схема будет работать еще примерно секунд 20-30, учитывая его небольшую емкость. Супрессор VD2 ограничивает напряжение на уровне 400 вольт. Конденсатор C3 необходимо использовать на напряжение не менее 400 - 450 вольт.

В качестве Ls1 можно использовать любой пьезодинамик или динамик. При отсутствии ионизирующего излучения ток через резисторы R2 – R4 не протекает (на фото на макетной плате пять резисторов, но общее их сопротивление соответствует схеме). Как только на счетчик Гейгера попадет соответствующая частица внутри датчика происходит ионизация газа и его сопротивление резко уменьшается вследствие чего возникает импульс тока. Конденсатор С4 отсекает постоянную часть и пропускает на динамик только импульс тока. Слышим щелчок.

В моем случае в качестве источника питания используется две аккумуляторных батареи от старых телефонов (две, так как необходимое питание должно быть более 5,5 вольт для запуска работы схемы в силу примененной элементной базы).

Итак, схема работает, изредка пощелкивает. Теперь как это использовать. Самый простой вариант – это пощелкивает немного – все хорошо, щелкает часто или вообще непрерывно – плохо. Другой вариант – это примерно подсчитываем количество импульсов за минуту и переводим количество щелчков в мкР/ч. Для этого из справочника необходимо взять значение чувствительности счетчика Гейгера. Однако в разных источника всегда немного разные цифры. В идеальном случае необходимо провести лабораторные замеры для выбранного счетчика Гейгера с эталонными источниками излучения. Так для СБМ-20 значение чувствительности варьируется в пределах от 60 до 78 имп/мкР по разным источникам и справочникам. Так вот, подсчитали количество импульсов за одну минуту, далее это число умножаем на 60 для аппроксимации числа импульсов за один час и все это разделить на чувствительность датчика, то есть на 60 или 78 или что у вас ближе к действительности получается и в итоге получаем значение в мкР/ч. Для более достоверного значения необходимо сделать несколько замеров и посчитать между ними среднеарифметическое значение. Верхний предел безопасного уровня радиации составляет примерно 20 - 25 мкР/ч. Допустимый уровень составляет примерно до 50 мкР/ч. В разных странах цифры могут отличаться.

P.S. На рассмотрение этой темы меня подтолкнула статья о концентрации газа радон, проникающего в помещения, воду и т.д. в различных регионах страны и его источниках.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Программируемый таймер и осциллятор

NE555

1 В блокнот
T1 MOSFET-транзистор

IRF710

1 В блокнот
VD1 Выпрямительный диод

1N4007

1 В блокнот
VD2 Защитный диод

1V5KE400CA

1 В блокнот
C1, C2 Конденсатор 10 нФ 2 В блокнот
C3 Электролитический конденсатор 2.7 мкФ 1 В блокнот
C4 Конденсатор 100 нФ 1 400В