Общая характеристика технологии производства микросхем. Полупроводниковые интегральные микросхемы технология изготовления Технология производства микросхем

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «ПТЭиВС»

КУРСОВАЯ РАБОТА

на тему: «Технология изготовления кристаллов полупроводниковых интегральных микросхем »

Дисциплина: «Материаловедение и материалы электронных средств»

Выполнил студент группы 31-Р

Козлов А. Н.

Руководитель Косчинская Е. В.

Орел, 2004

Введение

Часть I. Аналитический обзор

1.1 Интегральные схемы

1.2 Требования к полупроводниковым подложкам

1.3 Характеристика монокристаллического кремния

1.4 Обоснование применения монокристаллического кремния

1.5 Технология получения монокристаллического кремния

1.5.1 Получение кремния полупроводниковой чистоты

1.5.2 Выращивание монокристаллов

1.6 Механическая обработка монокристаллического кремния

1.6.1 Калибровка

1.6.2 Ориентация

1.6.3 Резка

1.6.4 Шлифовка и полировка

1.6.5 Химическое травление полупроводниковых пластин и подложек

1.7 Операция разделения подложек на платы

1.7.1 Алмазное скрайбирование

1.7.2 Лазерное скрайбирование

1.8 Разламывание пластин на кристаллы

Часть II. Расчет

Заключение

Технология изготовления интегральных микросхем представляет собой совокупность механических, физических, химических способов обработки различных материалов (полупроводников, диэлектриков, металлов), в результате которой создается ИС.

Повышение производительности труда обусловлено в первую очередь совершенствованием технологии, внедрением прогрессивных технологических методов, стандартизацией технологического оборудования и оснастки, механизацией ручного труда на основе автоматизации технологических процессов. Значимость технологии в производстве полупроводниковых приборов и ИС особенно велика. Именно постоянное совершенствование технологии полупроводниковых приборов привело на определенном этапе ее развития к созданию ИС, а в дальнейшем - к широкому их производству.

Производство ИС началось примерно с 1959 г. На основе предложенной к этому времени планарной технологии. Основой планарной технологии послужила разработка нескольких фундаментальных технологических методов. Наряду с разработкой технологических методов развитие ИС включало исследования принципов работы их элементов, изобретение новых элементов, совершенствование методов очистки полупроводниковых материалов, проведение их физико-химических исследований с целью установления таких важнейших характеристик, как предельные растворимости примесей, коэффициенты диффузии донорных и акцепторных примесей и др.

За короткий исторический срок современная микроэлектроника стала одним из важнейших направлений научно-технического прогресса. Создание больших и сверхбольших интегральных микросхем, микропроцессоров и микропроцессорных систем позволило организовать массовое производство электронных вычислительных машин высокого быстродействия, различных видов электронной аппаратуры, аппаратуры управления технологическими процессами, систем связи, систем и устройств автоматического управления и регулирования.

Микроэлектроника продолжает развиваться быстрыми темпами, как в направлении совершенствования полупроводниковой интегральной технологии, так и в направлении использования новых физических явлений.

1.6.1 Калибровка

Калибровка монокристаллов полупроводниковых материалов. Обеспечивает придание им строго цилиндрической формы и заданного диаметра. Калибровку монокристаллов полупроводников проводят чаще всего методом круглого шлифования на универсальных круглошлифовальных станках, снабженных алмазным шлифовальным кругом с зернистостью, обозначенной 50/40 (основная фракция 40 мкм, а количество крупной, размером 50 мкм, не более 15%). Перед операцией калибровки к торцам монокристалла наклеечной мастикой приклеивают металлические конуса («центры») таким образом, чтобы их ось совпадала с продольной осью монокристалла.

После калибровки на поверхности монокристалла образуется нарушенный слой глубиной 50...250 мкм в зависимости от скорости продольной подачи. Присутствие его на периферии подложек может вызывать появление сколов, а при последующей высокотемпературной обработке приводить к генерации структурных дефектов, распространяющихся в центральные области подложки. Для снятия нарушенного слоя прошедшие операции калибровки монокристаллы полупроводников подвергают операции химического травления.

6.2 Ориентация

В процессе роста монокристаллов наблюдается несоответствие оси слитка кристаллографической оси. Для получения пластин, ориентированных в заданной плоскости, до резки производят ориентацию слитков. Способы ориентации кристаллов определяются их природой, типом детали и ее функциональным назначением. Оптически изотропные диэлектрики ориентируют для учета влияния технологических свойств кристалла на точность параметров детали. У анизотропных диэлектриков положение преломляющих и отражающих поверхностей детали зависит от требуемого преобразования светового потока. Ориентация полупроводников предусматривает определения кристаллографической плоскости, в которой материал имеет заданные электрические свойства. Ориентацию полупроводников проводят рентгеновскими или оптическими методами.

Рентгеновский метод основан на отражении рентгеновских лучей от поверхности полупроводникового материала. Интенсивность отражения зависит от плотности упаковки атомами данной плоскости. Кристаллографической плоскости, более плотно упакованной атомами, соответствует большая интенсивность отражения лучей. Кристаллографические плоскости полупроводниковых материалов характеризуются определенными углами отражения падающих на них рентгеновских лучей. Величины этих углов для кремния: (111) –17°56", (110) - 30° 12", (100) – 44°23"

Рентгеновский диафрактометрицеский метод основан на измерении угла отражения характеристического рентгеновского излучения от идентифицируемой плоскости. Для этого применяют рентгеновские дифрактометры общего назначения, например типа ДРОН-1,5, или рентгеновские установки, например типа УРС-50И (М), и другие, снабженные рентгеновскими гониометрами и устройствами, обеспечивающими вращение горизонтально располагаемого монокристалла вокруг оси с заданной скоростью.

При проведении измерения падающий на торцевой срез монокристалла рентгеновский луч направляют под брэгговским углом отражения р. Счетчик рентгеновских квантов (Гейгера) располагают под углом 2р к падающему лучу. Если ориентируемая плоскость, например (111), составляет некоторый угол, а с торцевым срезом монокристалла, то отражение от нее можно получить, повернув монокристалл на этот же угол.

Определение угла отражения проводят относительно двух взаимно перпендикулярных осей, одна из которых лежит в плоскости чертежа (рисунок 3)

Рисунок 3 - Схема ориентации монокристаллов полупроводников рентгеновским методом:1-падающий рентгеновский луч; 2- монокристалл; 3 - отраженный рентгеновский луч: 4 - счетчик Гейгера

Оптический метод основан на том, что на протравленной в селективном травителе поверхности полупроводника возникают фигуры травления, конфигурация которых определяется ее кристаллографической ориентацией. На поверхности (111) фигуры травления имеют форму трехгранных пирамид, а на (100)-четырехгранных. При оснащении такой поверхности параллельным пучком света отражающиеся лучи будут образовывать на экране световые фигуры.

В зависимости от того, насколько сильно отклонена плоскость торцевого среза монокристалла от плоскости (hkl), световая фигура, образованная отраженным пучком света, будет находиться ближе или дальше от центра экрана. По величине отклонения световой фигуры от нулевого деления экрана определяют угол отклонения, а плоскости торца монокристалла от плоскости (hkl). Затем, поворачивая монокристалл на 90°, определяют другой угол Р; после выполнения ориентации монокристалла на его торце твердосплавным резцом наносят стрелку, направление которой указывает, в какую сторону от торца монокристалла отклонена требуемая плоскость. Точность ориентации монокристаллов полупроводников рентгеновским методом ± (2...6)", а оптическим ±(15...30)".

1.6.3 Резка

Таблица 2- Сравнительная характеристика абразивных материалов

Алмаз - самый твердый материал. При обработке кремния используются как природные, так и синтетические алмазы, уступающие первым по механическим свойствам. Иногда применяют карбиды бора В 4 С и кремния SiC, а также электрокорунд Al 2 O 3 . В настоящее время при резке слитков кремния на пластины в качестве режущего инструмента применяют металлические диски с внутренней алмазной режущей кромкой .


Рисунок 5 - Схема установки для резки алмазным диском: а - внутренний способ резки; б - гребенчатый способ резки (1 - барабан; 2 - диск; 3 - алмазное покрытие; 4 - оправка; 5 - пластина; 6 - слиток)

Поверхность пластин, полученных после резки, не удовлетворяет требованиям, которые предъявляют к качеству поверхности кремния при планарной технологии. С помощью электронографа устанавливают наличие приповерхностных слоев, не имеющих монокристаллической структуры . Толщина нарушенного слоя после резки диском 10 – 30 мкм в зависимости от скорости вращения диска. Поскольку в ИС глубина, на которой располагаются p-n – переходы, составляет единицы и десятые доли микрона, наличие нарушенных слоев толщиной 10 – 30 мкм неприемлемо. Микронеровности на поверхности не должны превышать 0,02 – 0,1 мкм. Кроме того, проведение фотолитографии плоскопараллельности пластин следует поддерживать на уровне ±1 мкм по диаметру пластины вместо 10 мкм после резки.

6.4 Шлифовка и полировка

Для обеспечения требуемого качества поверхности пластин должны быть подвергнуты дальнейшей обработке. Эта обработка состоит в шлифовке и последующей полировке пластин. Шлифовка и полировка пластин производится на плоскошлифовальных прецизионных станках с использованием абразивных материалов с размером зерна около 40 мкм (микропорошки). Чаще всего применяют группы микропорошков с зернами 14 мкм и меньше. В таблице 3 приведены марки и размеры зерен основной фракции используемых микропорошков. Микропорошки М14, М10, М7, М5 изготавливаются из карбидов бора, кремния и электрокорунда, микропорошки марок АСМ – из алмаза.

Таблица 3- Микропорошки для шлифовки и полировки пластин кремния

В зависимости от типа микропорошка выбирается материал поверхности шлифовальщика. При шлифовке пластин микропорошками М14-М15 применяют стеклянный шлифовальщик, при полировке микропорошками АСМ – специальные шлифовальщики с поверхностью из тканевых материалов. При обработке пластин на рабочий шлифовальщик устанавливаются три головки с наклеенными пластинами. Головки удерживаются от перемещения по шлифовальщику специальными направляющими кронштейнами с опорными роликами (рисунок 6). За счет силы трения возникающей между соприкасающимися поверхностями рабочего шлифовальщика и головок, последние вращаются вокруг своих осей. Это вращение головок создает условия для равномерного шлифования или полирования.

Таблица 4 - Характеристики микропорошков

Тип порошка Толщина нарушенного слоя, мкм Скорость удаления материала, мкм/мин Класс шероховатости поверхности
М14 20 – 30 3 7
М10 15 – 25 1,5 8 – 9
АСМ3/2 9 – 11 0,5 – 1,0 12 – 13
АСМ1/0,5 5 – 7 0,35 13
АСМ0,5/0,3 Менее 3 0,25 13 – 14
АСМ0,3/0,1 Менее 3 0,2 14

Рисунок 6 - Схема плоскошлифовального станка и расположения головок: 1- дозирующее устройство с абразивной суспензией ; 2- грузы ; 3- головка ; 4- пластины ; 5- шлифовальщик ; 6- направляющий ролик

В целом механическая обработка пластин, удовлетворяющих требованиям планарной технологии, приводит к большим потерям кремния (около 65%).

6.5 Химическое травление полупроводниковых пластин и подложек

Сопровождается удалением поверхностного слоя с механически нарушенной кристаллической структурой, вместе с которым удаляются и имеющиеся на поверхности загрязнения. Травление является обязательной технологической операцией.

Кислотное травление полупроводников в соответствии с химической теорией идет в несколько этапов: диффузия реагента к поверхности, адсорбция реагента поверхностью, поверхностные химические реакции, десорбция продуктов реакции и диффузия их от поверхности.

Травители, для которых самыми медленными, определяющими суммарный процесс травления этапами являются диффузионные, называются полирующими. Они нечувствительны к физическим и химическим неоднородностям поверхности, сглаживают шероховатости, выравнивая микрорельеф. Скорость травления в полирующих травителях существенно зависит от вязкости и перемешивания травителя и мало зависит от температуры.

Травители, для которых самыми медленными стадиями являются поверхностные химические реакции, называются селективными. Скорость травления в селективных травителях зависит от температуры, структуры и кристаллографической ориентации поверхности и не зависит от вязкости и перемешивания травителя. Селективные травители с большой разницей скоростей травления в различных кристаллографических направлениях принято называть анизотропными.

Поверхностные химические реакции при полирующем травлении проходят в две стадии: окисление поверхностного слоя полупроводника и перевод окисла в растворимые соединения. При травлении кремния роль окислителя выполняет азотная кислота:

Фтористоводородная (плавиковая) кислота, входящая в состав травителя, переводит окись кремния в тетрафторид кремния:

Для травления, дающего зеркальную поверхность пластин, используют смесь указанных кислот в соотношении 3:1, температура травления 30...40°С, время травления около 15 с.


Ломка проскрайбированных пластин - весьма ответственная операция. При неправильном разламывании даже хорошо проскрайбированных пластин возникает брак: царапины, сколы, нарушение формы кристаллов и т. п.

7.1 Алмазное скрайбирование

Качество скрайбирования и последующей ломки в значительной степени зависят от состояния рабочей части алмазного резца. Работа резцом в изношенным режущим ребром или вершиной приводит к сколам при скрайбировании и некачественной ломке. Обычно скрайбирование выполняют резцами, изготовленными из натурального алмаза, которые по сравнению с более дешевыми резцами из синтетических алмазов имеют большую стоимость. Получили распространение резцы, имеющие режущую часть в форме трехгранной или усеченной четырехгранной пирамиды (рисунок 7, в), режущими элементами которой являются ее ребра.

7.2 Лазерное скрайбирование

При лазерном скрайбировании (рисунок 8) разделительные риски между готовыми структурами создают испарением узкой полосы полупроводникового материала с поверхности пластины во время ее перемещения относительно сфокусированного лазерного луча. Это приводит к образованию в пластине сравнительно глубоких (до 50...100 мкм) и узких (до 25…40 мкм) канавок. Канавка, узкая и глубокая по форме, играет роль концентратора механических напряжений. При разламывании пластины возникающие напряжения приводят к образованию на дне канавки трещин, распространяющихся сквозь всю толщину пластины, в результате чего происходит ее разделение на отдельные кристаллы.

Наряду с созданием глубокой разделительной канавки достоинством лазерного скрайбирования является его высокая производительность (100...200 мм/с), отсутствие на полупроводниковой пластине микротрещин и сколов. В качестве режущего инструмента используют импульсный оптический квантовый генератор с частотой следования импульсов 5...50 кГц и длительностью импульса 0,5 мс.

Рисунок 8 - Схема лазерного скрайбирования полупроводниковой пластины

8 Разламывание пластин на кристаллы

Разламывание пластин на кристаллы после скрайбирования осуществляется механически, приложив к ней изгибающий момент. Отсутствие дефектов кристаллов зависит от приложенного усилия, которое зависит от соотношения габаритных размеров и толщины кристаллов.


Рисунок 10 - Разламывание полупроводниковой пластины прокатыванием между валиками: 1 - пластина; 2 - упругий валик; 3 - защитная пленка; 4 - стальной валик; 5 - пленка-носитель

Пластину 1, расположенную рисками вверх, прокатывают между двумя цилиндрическими валиками: верхним упругим (резиновым) 2 и нижним стальным 4. Для сохранения первоначальной ориентации кристаллов пластину закрепляют на термопластичной или адгезионной пленке-носителе 5 и защищают ее рабочую поверхность полиэтиленовой или лавсановой пленкой 3.Расстояние между валиками, определяемое толщиной пластины, устанавливают, перемещая один из них.

При разламывании на сферической опоре (рисунок 11) пластину 2, расположенную между двумя тонкими пластичными пленками, помещают рисками вниз на резиновую диафрагму 3, подводят сверху сферическую опору 1 и с помощью диафрагмы пневмоническим и гидравлическим способами прижимают к ней пластину, которая разламывается на отдельные кристаллы. Достоинствами этого способа являются простота, высокая производительность, (ломка занимает не более 1¸1,5 мин) и одностадийность, а также достаточно высокое качество, т.к. кристаллы не смещаются относительно друг друга.

Таблица 5 - Глубина нарушенного слоя пластин кремния после различных видов механической обработки

Часть II. Расчет

ОПРЕДЕЛЕНИЕ СУММАРНОГО ПРИПУСКА НА МЕХАНИЧЕСКУЮ ОБРАБОТКУ

Z=Z ГШ +Z ТШ +Z ПП +Z ФП,

где Z – сумма припусков на обработку, Z ГШ – припуск на грубую шлифовку, Z ТШ – припуск на точную шлифовку, Z ПП – припуск на предварительную полировку, Z ФП – припуск на финишную полировку.

m ∑ = ρ* l ∑ * S,

где S – площадь заготовки, ρ= 2,3 г/см – плотность кремния.

m ∑ = 2,3* 10 3 * 696,21* 10 -6 * 0.0177 = 0,0283 кг

Масса обработанной заготовки:

m= 2,3* 10 3 * 550* 10 -6 * 0,0177 = 0,0223 кг

M П = (N* m) / n,

где M П – полезная масса материала.


k ИМ = M П / M,

где k ИМ – коэффициент использования материала.

K ИМ =11,903/16,479 = 0,722

Заключение

В курсовой работе был разработан технологический процесс для изготовления кристаллов полупроводниковых интегральных микросхем из монокристаллического кремния. При этом коэффициент использования материала для рассмотренных производственных условий составил 0,722. Это говорит о том, что технологичность производства находится на довольно высоком уровне, особенно на этапе обработки заготовок, т. к. выход годного по обработке равен 81%. Значение коэффициента использования материала довольно высоко, хотя данный технологический процесс был сравнительно недавно внедрен на производстве.

Список используемой литературы

1. Березин А.С., Мочалкина О.Р.: Технология и конструирование интегральных микросхем. - М. Радио и связь, 1983. - 232 с., ил.

2. Готра З. Ю. Технология микроэлектронных устройств: Справочник. - М.: Радио и связь, 1991. - 528 с.: ил.

3. Коледов Л. А. Технология и конструкции микросхем, микропроцессоров и микросборок: Учебник для вузов. - М.: Радио и связь,1989. - 400 с., ил.

4. Конструирование и технология микросхем. Курсовое проектирование.: под ред. Л. А. Коледова. - М.: Высш. шк., 1984. - 231 с., ил.

5. СтепаненкоИ. П. Основы микроэлектроники: Учебное пособие для вузов. - 2-е изд., перераб. и доп. - М.: Лаборатория Базовых Знаний, 2000 - 488 с., ил.

6. Черняев В. Н. Технология производства интегральных микросхем и микропроцессоров: Учебник ля вузов. - 2-е изд., перераб. и доп. - М.: Радио и связь, 1987. - 464 с.: ил.

Введение

1.аналитический обзор

2. Технологическая часть

1 Описание технологического процесса

2 Выбор класса производственных помещений

3 Основные материалы и реактивы

4 Основные технологические операции

4.1 Очистка подложки

4.2 Термическое окисление

4.3 Литографические процессы

4.4 Ионная имплантация

4.5 Металлизация

4.6 Межслойная изоляция

3. инженерно - экономические расчеты

Заключение


Введение

Технология интегральных схем, развиваясь исключительно быстрыми темпами, достигла немыслимых успехов. Электроника прошла несколько этапов развития, за время которых сменилось несколько поколений элементной базы: дискретная электроника электровакуумных приборов, интегральная электроника микросхем (микроэлектроника), интегральная электроника функциональных микроэлектронных устройств (функциональная микроэлектроника). В настоящее время она играет определяющую роль в совершенствовании практически всех отраслях народного хозяйства (интегральные схемы используются в компьютерах, системах автоматизированного проектирования, промышленных роботах, средствах связи и пр.).

Применяемые при изготовлении полупроводниковых интегральных микросхем (ИМС) технологические процессы носят групповой характер, т.е. одновременно изготавливается большое количество ИМС. Многие технологические операции позволяют осуществить обработку до 200 пластин, что позволяет одновременно изготовить свыше миллиона электронных приборов.

Для реализации больших возможностей планарной технологии необходимо выполнение немалого числа общих требований производства и определенных технологических условий, обеспечивающих получение образцов полуфабрикатов высокого качества на всех технологических этапах. А это невозможно без применения особо чистых основных и вспомогательных материалов, выделяемых в специальный класс «для полупроводникового производства», точного технологического и контрольного оборудования, производственных помещений, удовлетворяющим столь высоким требованиям технологической гигиены, какие не встречаются ни в каких других отраслях.

Целью данного проекта является изучение современных технологических приемов в производстве изделий твердотельной электроники и разработка сквозного технологического процесса изготовления МДП-транзистора с диодом Шоттки.

транзистор интегральный схема

1. Аналитический обзор

Полевой транзистор с изолированным затвором - это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Полевой транзистор с изолированным затвором состоит из пластины полупроводника (подложки) с относительно высоким удельным сопротивлением, в которой созданы две области с противоположным типом электропроводности). На эти области нанесены металлические электроды - исток и сток. Поверхность полупроводника между истоком и стоком покрыта тонким слоем диэлектрика (обычно слоем оксида кремния). На слой диэлектрика нанесен металлический электрод - затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника (рисунок 1). Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами или МОП-транзисторами (металл-оксид (окисел)-полупроводник).

Рисунок 1 - Топология и основные элементы МОП-транзистора

Технология изготовление МОП-ИМС занимает доминирующее положение среди процессов изготовления полупроводниковых ИМС. Это объясняется тем, что ИМС на МОП-транзисторах составляют значительную часть основных изделий микроэлектроники различного функционального назначения. Благодаря высокой надежности и большой функциональной сложности МОП-ИМС имеют меньшие геометрические размеры, чем ИМС на биполярных транзисторах. Технология изготовления кристаллов МОП-ИМС во многом схожа с технологией биполярных ИМС. Отличие при этом обусловлено рядом конструктивно-технологических особенностей самих МОП-ИМС.

Различают МОП-транзисторы со встроенным и индуцированным каналом :

·В МОП-транзисторах со встроенным каналом есть специальный встроенный канал, проводимость которого модулируется смещением на затворе. В случае канала p типа положительный канал отталкивает дырки из канала (режим обеднения), а отрицательный притягивает (режим обогащения). Соответственно проводимость канала либо уменьшается, либо увеличивается по сравнению с ее значением при нулевом смещении.

·МОП-транзисторах с индуцированным каналом проводящий канал возникает между сильнолегированными областями истока и стока и, следовательно, заметный ток стока появляются только при определенной полярности и при определенном значении напряжения на затворе относительно истока (отрицательного при p-канале и положительного при n-канале). Это напряжение называют пороговым.

Первыми в промышленном производстве были p-МОП-ИМС, т.к. изготовление n-МОП-ИМС затруднялось возникновением на поверхности p-Si при термическом оксидировании инверсного n-слоя, который электрически связывает элементы ИМС. Но в настоящее время в производстве преобладают n-канальные ИМС .

Транзисторы с электронной проводимостью канала имеют лучшие характеристики, так как подвижность электронов в кремнии значительно превышает подвижность дырок.

МДП-ИМС изготавливают по планарной технологии. Наиболее ответственные моменты в технологическом процессе это: создание подзатворного диэлектрика, точное совмещение затвора с каналом и получение структур с малой длиной канала.

Для полевого транзистора с изолированным затвором возможно его сочетание с диодом Шоттки. Диод Шоттки в интегральном исполнении представляет собой контакт полупроводник - металл, на котором образуется так называемый барьер Шоттки. Переходам такого типа, выполненных с учетом определенных требований, присущи такие эффекты как несимметрия вольт-амперной характеристики и наличие барьерной емкости. Для получения подобных переходов металл, наносимый в качестве электрода на поверхность электронного полупроводника, должен иметь работу выхода, меньшую работы выхода полупроводника; для электрода, наносимого на поверхность дырочного полупроводника, требуется металл с большей работой выхода (рисунок 2) .

Рисунок 2 - Зонная диаграмма образования бартера Шоттки в месте контакта металла и полупроводника p-типа

В этом случае в полупроводнике на границе с металлом образуется обогащенный основными носителями слой, обеспечивающий высокую проводимость перехода независимо от направления тока.

В целом, изготовление МДП-транзистора с диодом Шоттки не требует введения дополнительных технологических операций.

2. Технологическая часть

1 Описание технологического процесса

Рисунок 3 - Последовательность технологических операций производства МОП-транзистора с диодом Шоттки

В исходную пластину методом ионной имплантации внедряются бор для получения подложки p-типа (рисунок 3, а).

После этого с помощью фотолитографии и ионной имплантации фосфора формируются области с повышенным содержанием доноров (рисунок 3, в-е).

В последствии выращивается дополнительный слой диоксида кремния. Так как температура на этой стадии высокая, то примеси фосфора в течение этой операции более равномерно распределяются в толще приповерхностного слоя подложки (рисунок 3, ж).

С помощью очередной фотолитографии удаляем оксид кремния в области, разделяющей сток и исток будущего транзистора (рисунок 3, з).

Теперь самая ответственная во всем цикле производства операция - выращивание подзатворного диэлектрика (рисунок 3, и).

Теперь остается сформировать электроды стока, истока и затвора, а также переход Шоттки. Сейчас упрощенно покажем эту металлизацию (рисунок 3, к-м), а далее более подробно рассмотрим принципы ее формирования (раздел 2.4.5).

2 Выбор класса производственных помещений

За основу современных требований по классам чистоты чистых помещений и чистых зон берутся нормы, определенные в Федеральном стандарте США FS209E . Подготовленный проект Российского стандарта гармонизован с этим стандартом США.

Критерий чистоты - это отсутствие или минимальное число частиц загрязнений, которые находясь на поверхности пластины могут вызывать либо дефекты в выращиваемых слоях, либо становиться причиной коротких замыканий соседних близко расположенных элементов ИС.

Таблица 1-Классы чистоты по взвешенным в воздухе частицам для чистых помещений

Класс чистотыПредельно допустимая счетная концентрация частиц N (шт/м3) размером равным и превышающим (мкм)0,10,20,30,51,0Класс 1 ISO102---Класс 2 ISO10024104-Класс 3 ISO1000237102358Класс 4 ISO100002370102035283Класс 5 ISO10000023700102003520832Класс 6 ISO1000000237000102000352008320Класс 7 ISO---35200083200Класс 8 ISO---3520000832000Класс 9 ISO---352000008320000

Количественный критерий - критический размер частиц - одна треть от минимального геометрического горизонтального размера элемента ИС:

Таким образом, можно выбирать чистое помещение, соответствующее классам чистоты от ISO 1 до ISO 6. Ориентируясь также на стоимость, выбираем класс чистоты ISO 2, для которого максимально допустимая концентрация взвешенных в воздухе частиц, равных или больших чем рассматриваемый размер 0,2 мкм (число частиц в 1м3 воздуха) составляет:

где N - номер класса чистоты ISO; D - рассматриваемый размер частиц, мкм.

3 Основные материалы и реактивы

В течение многих лет основным полупроводниковым материалом, который используется для изготовления интегральных схем, остается монокристаллический кремний. Пластины кремния являются той основой, в поверхностных слоях которой создаются полупроводниковые области с заданными электрофизическими характеристиками. На поверхности кремния формируются диэлектрические слои окислением самого полупроводникового материала или нанесением диэлектриков из внешних источников; образуются структуры многослойной металлизации, защитные, стабилизирующие слои и так далее. Требования к пластинам кремния детально отработаны, существует целый каталог международных стандартов ассоциации SEMI, в то же время продолжается постоянное повышение требований к кремнию, что связано с постоянным стремлением к снижению себестоимости конечного продукта - интегральных схем.

Ниже приведены некоторые геометрические характеристики пластин кремния в соответствии с техническими условиями ЕТО.035.124ТУ, ЕТО.035.206ТУ, ЕТО.035.217ТУ, ЕТО.035.240ТУ, ЕТО.035.578ТУ, ПБЦО.032.015ТУ .

Диаметр пластины 100мм.

Ориентация кремниевой подложки (100) имеет преимущество по сравнению с (111), заключающееся с более высокой подвижности электронов, обусловленной низкой плотностью поверхностных состояний на границе кремний-диэлектрик.

Толщина пластины 500 мкм.

Разброс значений толщины в партии ±10 мкм.

Разброс значений толщины по пластине ±12 мкм.

Прогиб 20 мкм.

Отклонение от плоскостности ±5 мкм.

Высокие требования по примесям и механическим частицам предъявляются к деионизованной воде. В таблице 2 приведены выписки из руководящего материала международной ассоциации SEMI с указанием рекомендуемых параметров сверхчистой воды для производства полупроводниковых интегральных схем с минимальным размером элемента 0,8-1,2 мкм. Соответствующая индексация жидких реагентов по стандартам SEMI записывается как SEMI C7.

Значение параметра удельного электрического сопротивления воды должно быть близко к теоретической величине 18,2 МОм·см.

Содержание окисляемой органики, ppb<10Содержание тяжелых металлов, ppb<3Частиц/литр 0,1-0,2U 0,2-0,3U 0,3-0,5U >0,5U <1500 <800 <50 <1Бактерии/100мл<5SiO23Содержание ионов, ppb Na+ K+ Cl- Br- NO3- SO42- Общее количество ионов, ppb 0,025 0,05 0,025 0,05 0,05 0,2 <0.2Сухой остаток, ppm<0,05

Кроме параметров, указанных в таблице, в рекомендациях SEMI приведены данные по наличию следов ряда металлов в воде. Анализ проводится на содержание следующих металлов: Li, Na, K, Mg, Ca, Sr, Ba, B, Al, Cr, Mn, Fe, Ni, Cu, Zn, Pb.

Для воды градации SEMI C7 для всех без исключения указанных элементов допустимая концентрация следов лежит в пределах от 0,001 до 0,005 ppb.

Уровень чистоты жидких химических реактивов, применяемых в производстве интегральных схем, определяется серией международных стандартов и имеет различные градации в соответствии с уровнем сложности интегральных схем.

«Grade 2» имеет обозначение стандарта, начинающееся с символов SEMI C7. Реактивы, имеющие уровень чистоты «Grade 2», используются при изготовлении интегральных схем с проектными нормами в диапазоне 0,8-1,2 мкм, что соответствует требованию задания. В реактивах градации «Grade 2» контролируются посторонние частицы размером 0,5 мкм и выше. Практически во всей номенклатуре реактивов максимальная норма - 25 частиц в 1 мл реактива. В спецификациях на такие реактивы содержание следов металлов указывается 5-10 ppb.

Помимо стандартов для химических реактивов повышенной чистоты разработаны спецификации в виде руководящих материалов.

В соответствии с ними сформированы три уровня (яруса) требований к чистоте: A, B, C (в английском написании - Tier A, Tier B, Tier C). Уровню А соответствуют требования стандарта SEMI C7. Соответственно, реактивы для данного технологического процесса должны отвечать Tier A (ярус A).

В технологии изготовления интегральных схем исключительную роль играют газы. Практически все технологические процессы проходят в газовой среде и проблема создания производства полупроводниковых приборов «без загрязнений» - это в большой степени проблема чистоты газов. Различают два типа газовых сред: газы - носители и газы химических реакций в технологических процессах. Парциальное давление газов-носителей, как правило, высокое, в связи с чем их чистота с учетом высокой концентрации в рабочей газовой среде особенно критична в технологии.

Таблица 3 - Газы в технологических процессах изготовления ИС

№НаименованиеХимическая формулаСодержание основного вещества, %Суммарное содержание примесей (ppm частей моля/моль)1АммиакNH399,998122АргонAr99,999900,953АрсинAsH399,94533 (из них 500 ppm - водород H2)4Треххлористый борBCl399,9995 (по весу в жидкой фазе)5 (по весу в жидкой фазе)5Трифторид бораBF399,00,94% - газы не растворимые в воде, 200 ppm - SiF4. Остальные примеси - 28 ppm.6Четырехфтористый углеродCF499,99730, в т. ч. 20 - N2, 5 - O27ДиборанB2H699,81012, из них 500 - CO2 300 - B4H10 - тетраборан 50 - H2 50 - N28ДихлорсиланH2SiCl299Основные примеси - другие хлорсиланы в жидкой фазе9ГелийHe99,99954,510ГексафторэтанC2F699,9963911ВодородH299,99972,812Хлористый водородHCl99,9972813Фтористый ангидридHF99,94525, в т. ч. 200 - водяные пары по объему14АзотN299,999990,115Трифторид азотаNF399,81000, в т. ч. CF4 - 500, CO - 130, N2 -100, O2 - 10016Закись азотаN2O99,99726, в т. ч. 10 - N217КислородO299,998218ФосфинPH399,98181, в т. ч. 100 - H2, 50 - N219МоносиланSiH499,9945920Четыреххлористый кремнийSiCl499,6Основные примеси: SiH2Cl2 - 0,2% в жидкой фазе, SiHCl3 - 0,2% в жидкой фазе21Гексафторид серыSF699,97209, в т. ч. 100 - CF422Гексафторид вольфрамаWF699,99639, в т. ч. 20 - HF23Трифторид хлораClF3

4 Основные технологические операции

2.4.1 Очистка подложки

Понятно, что на любой подложке в каком-то количестве присутствуют загрязнения. Это могут быть частицы пыли, молекулы различных веществ, как неорганических, так и органических. Пылеобразные частицы удаляются либо механической кистевой, либо ультразвуковой отмывкой. Применяются методы с использованием центробежных струй. Процедура химической очистки обычно проводится после ликвидации неорганических молекул и атомов, и заключается в удалении органических загрязнений.

Обычная процедура очистки выполняется в смеси H2O-H2O2-NH4OH, которая обеспечивает удаление органических соединений за счет сольватирующего действия гидроксида аммония и окисляющего действия перекиси водорода. Для удаления тяжелых металлов используют раствор H2O-H2O2-HCl. Подобная очистка подложек проводится при температуре ~80ºС в течение 10-20 минут, после чего осуществляется их отмывка и сушка.

4.2 Термическое окисление

Под окислением полупроводников понимают процесс их взаимодействия с окисляющими агентами: кислородом, водой, озоном и т.д.

Слой двуокиси кремния формируется обычно на кремниевой пластине за счет химического взаимодействия в приповерхностной области полупроводника атомов кремния и кислорода. Кислород содержится в окислительной среде, с которой контактирует поверхность кремниевой подложки, нагретой в печи до температуры 900 - 1200 °С. Окислительной средой может быть сухой или влажный кислород. Схематично вид установки показан на рисунке 4 (в современных установках пластины в подложкодержателе располагаются вертикально).

Рисунок 4-Схема установки процесса термического окисления

Требования к оборудованию:

1)контролируемая с точностью до 1 градуса температура подложкодержателя;

2)обеспечение плавного повышения и понижения температуры в реакторе (двухстадийный нагрев);

)отсутствие посторонних частиц в реакторе (подложкодержатель сначала вводится в трубу реактора, а затем опускается на дно);

)отсутствие посторонних примесей, в частности, ионов натрия на внутренней поверхности реактора (с целью их удаления проводится предварительная продувка трубы реактора хлором);

)обеспечение введения кремниевых пластин в реактор сразу после их химической очистки.

Химическая реакция, идущая на поверхности кремниевой пластины, соответствует одному из следующих уравнений:

·окисление в атмосфере сухого кислорода (сухое окисление): SiТВ+ O2 = SiO2;

·окисление в парах воды (влажное окисление): SiТВ+2H2O = SiO2 + 2H2;

·термическое окисление в присутствии хлора (хлорное окисление);

·окисление в парах воды при повышенных температуре и давлении (гидротермальное окисление).

При одной и той же температуре коэффициент диффузии воды в диоксиде кремния существенно выше коэффициента диффузии кислорода. Этим объясняются высокие скорости роста оксида во влажном кислороде. Выращивание пленок только во влажном кислороде не применяется из-за плохого качества оксида. Более качественные пленки получаются в сухом кислороде, но скорость их роста слишком мала.

Для маскирования при локальных обработках оксидирование ведут в режиме сухой-влажный-сухой кислород. Для формирования подзатворного диэлектрика МОП-структур применяют сухой кислород, т.к. пленки получаются более качественные.

4.3 Литографические процессы

Основное назначение литографии при изготовлении структур микросхем - получение на поверхности пластин контактных масок с окнами, соответствующими топологии формируемых технологических слоев, и дальнейшая передача топологии (рисунка) с маски на материал данного слоя. Литография представляет собой сложный технологический процесс, основанный на использовании явлений, происходящих в резистах при актиничном облучении.

Резисты, растворимость которых в проявителе увеличивается после облучения, называются позитивными. Негативные резисты после облучения становятся практически нерастворимыми в проявителе.

Стандартно в электронной промышленности применяется оптическая литография - фотолитография (рисунок 5), - для которой применяют фоторезисты, чувствительные к актиничному излучению с длиной волны от 200 до 450 нм. Фоторезисты представляют собой сложные полимерные композиции, в составе которых имеются фоточувствительные и пленкообразующие компоненты, растворители и специальные добавки.

В проекте используется позитивный высококачественный и стабильный фоторезист ФП-20Ф, предназначенный для реализации контактных и проекционных фотолитографических процессов в производстве полупроводниковых приборов и интегральных схем. В соответствии с этим для травления можно применять слабый водный раствор KOH или NaOH.

Наиболее оптимальный способ нанесения фоторезиста - центрифугирование. Подложка закрепляется на горизонтальной центрифуге. На подложку наносится 1-5 мл фоторезиста (в зависимости от размеров подложки). Центрифуга приводится во вращение до скорости 1000-3000 об/мин (в зависимости от марки фоторезиста). Вращение продолжается 1-2 мин до формирования пленки фоторезиста, растворитель при этом испаряется.

Рисунок 5 - Схема основных операций фотолитографического процесса

Существует несколько способов экспонирования, в проекте будем использовать бесконтактный (рисунок 6). Проекционная печать позволяет полностью исключить повреждения поверхности шаблона. Изображение топологического рисунка шаблона проецируется на покрытую резистом пластинку, которая расположена на расстоянии нескольких сантиметров от шаблона.

Источник света; 2- оптическая система; 3- шаблон;

Фоторезист; 5- кремниевая пластина.

Рисунок 6-Схема проекционной печати

Для достижения высокого разрешения отображается только небольшая часть рисунка шаблона. Это небольшая отражаемая область сканируется или перемещается по поверхности пластины. В сканирующих проекционных устройствах печати шаблон и пластина синхронно перемещаются.

При сушке фоторезиста очень важно подобрать нужные температуру и время. Сушка фоторезиста будет осуществляться наиболее распространенным способом - ИК-излучением. При этом растворитель удаляется равномерно по толщине слоя резиста и не происходит его уплотнения, а время сушки понижается до нескольких минут.

4.4 Ионная имплантация

Легирование полупроводниковых материалов с целью получения заданных электрофизических параметров слоев при формировании определенной геометрической структуры ИС остается важнейшей технологической задачей. Существует два вида легирования: диффузионное (включает в себя стадии загонки примеси и последующей разгонки) и ионное.

Наиболее распространенным является ионная имплантация (ионное легирование) как процесс внедрения в мишень ионизованных атомов с энергией, достаточной для проникновения в ее приповерхностные области (рисунок 7). Этот способ отличается универсальностью (можно вводить любые примеси в любое твердое тело), чистотой и точностью процесса легирования (практически исключается попадание неконтролируемых примесей) и низкими температурами процесса.

Источник ионов; 2 - масс-спектрометр; 3 - диафрагма; 4 - источник высокого напряжения; 5 - ускоряющая трубка; 6 - линзы; 7 - источник питания линз; 8 - система отклонения луча по вертикали и система отключения луча; 9 - система отклонения луча по горизонтали; 10 - мишень для поглощения нейтральных частиц; 11 - подложка.

Рисунок 7 - Схема установки ионного легирования

При ионной имплантации проявляется ряд нежелательных эффектов, таких как эффект каналирования, аморфизация приповерхностного слоя подложки, образование радиационных дефектов.

Эффект каналирования наблюдается при попадании иона в свободное пространство между рядами атомов. Такой ион постепенно теряет энергию за счет слабых скользящих столкновений со стенками канала и, в конце концов, покидает эту область. Расстояние, проходимое ионом в канале, может в несколько раз превышать длину пробега иона в аморфной мишени, а значит профиль распределения примеси получается неравномерным.

При внедрении ионов в кремниевую кристаллическую подложку они подвергаются электронным и ядерным столкновениям, однако, только ядерные взаимодействия приводят к смещению атомов кремния. Легкие и тяжелые ионы по-разному взаимодействуют с подложкой.

Легкие ионы при внедрении в мишень первоначально испытывают в основном электронное торможение. На профиле распределения смещенных атомов по глубине подложки существует скрытый максимум концентрации. При внедрении тяжелых ионов они сразу начинают сильно тормозиться атомами кремния.

Тяжелые ионы смещают большое количество атомов мишени из узлов кристаллической решетки вблизи поверхности подложки. На окончательном профиле распределение плотности радиационных дефектов, который повторяет распределение длин пробега выбитых атомов кремния, существует широкий скрытый пик. Например, легкие ионы 11B испытывают в основном электронное торможение, тяжелые ионы 31P или 75As - тормозятся атомами кремния.

В связи с этим после проведения ионного легирования необходимо провести постимплантационный отжиг, чтобы восстановить приповерхностную область мишени.

Области стока и истока будем формировать внедрением фосфора, а для получения подложки p-типа исходную подложку будем легировать бором.

4.5 Металлизация

Металлизация завершает процесс формирования полупроводниковых структур. Для каждой ИМС металлизацию желательно выполнять из одного материала. Процесс металлизации заключается в реализации межкомпонентных соединений с низким сопротивлением и создании контактов с низким сопротивлением к высоколегированным областям p- и n-типа и слоям поликристаллического кремния.

Согласно заданию на курсовой проект необходимо сформировать 3 слоя металлизации. Такая металлизация полнее отвечает предъявляемым требованиям, но менее технологична, т.к. содержит не один слой металла.

В качестве первого слоя металлизации на оксиде чаще всего используют тугоплавкие металлы, особенно молибден и ванадий. Имя большую проводимость, чем другие тугоплавкие металлы, они отличаются высокой стабильностью, хорошей адгезией, легко травятся при фотолитографии. Должны обладать малой растворимостью в материале подложки и создавать хороший омический контакт с полупроводником, небольшим пороговым напряжением. Вторым слоем обычно служит алюминий, а в особо ответственных устройствах - золото. Он должен быть высокопроводящим.

Последний по порядку нанесения слой металлизации, называемый проводящим слоем, должен иметь хорошую электропроводность и обеспечивать качественное подсоединение контактных площадок к выводам корпуса. Для проводящих слоев применяются медь, алюминий, золото.

Существует множество методов получения металлических пленок. Получение качественных незагрязненных пленок методом термовакуумного напыления сложно. Пленки алюминия, полученные термовакуумным испарением, обладают большой неравномерностью размеров зерен и высоко концентрацией внутри зерен. Их последующая термообработка приводит к миграции атомов металла и скоплению их вокруг крупных частиц с образованием высоких бугорков. Получение рисунков на таких пленках фотолитографией приводит к большим неровностям краев вследствие анизотропии травления по границам зерен. Поэтому для получения линий металлизации очень малой ширины отказываются от термовакуумных процессов . Способ химического осаждения пленок из парогазовой смеси чаще применяется в лабораторных условиях. Электронно-лучевое несмотря на то, что усложняет конструкцию установки, позволяют снизить загрязнение пленок и повысить производительность процесса (рисунок 8). Оптимальная скорость роста пленки составляет 0.5 мкм/мин. С помощью данного метода наносят пленки алюминия и его сплавов, а также Si, Pd, Au, Ti, Mo, Pt, W.


К преимуществам электронно-лучевого испарения относятся:

·возможность использования больших по массе источников (не требуется перезагрузка при нанесении толстых пленок);

·возможность последовательного нанесения различных пленок из соседних источников, расположенных в одной камере;

·высокая скорость роста пленок;

·возможность напыления тугоплавких материалов.

Барьер Шоттки по выполняемым функциям не относится к металлизации, но по технологии формирования его можно отнести к металлизации, т.к. она аналогична получению омических контактов к активным областям. Важнейшим этапом формирования барьеров Шоттки является выбор пары металл - полупроводник и оптимальных режимов.

Итак, для контактного слоя применим силицид платины, который будет нанесен методом электронно-лучевого испарения путем совместного испарения из двух источников. Барьер Шоттки обеспечит сплав титана и вольфрама, нанесенный на кремний тем же методом. По сути, этот сплав будет аналогичен сильнолегированной области. Для проводящего слоя применим алюминий, также нанесенный методом электронно-лучевого испарения.

4.6 Межслойная изоляция

Многоуровневая металлизация применяется для БИС и СБИС. Увеличение числа элементов увеличивает и площадь межэлементных соединений, поэтому их размещают в несколько уровней, разделенных изолирующими слоями и соединенными между собой в нужных местах.

Изолирующие диэлектрические пленки должны иметь высокое напряжение пробоя, низкие диэлектрическую постоянную и потери, минимальное химическое взаимодействие с прилегающими пленками, низкий уровень механических напряжений, низкую плотность связанного электрического заряда, высокую химическую стабильность и технологичность при получении пленок и создании рисунка. Недопустимым является наличие сквозных микроотверстий, которые могут привести к короткому замыканию между слоями металлизации.

Технология многоуровневой металлизации включает формирование первого уровня металлизации, получение изолирующего слоя с последующим вскрытием межуровневых контактных окон, формирование второго слоя металлизации и т.д.

Многие серийно выпускаемые ИМС изготавливаются на основе алюминиевой металлизации с изолирующими слоями SiO2 . Пленки диоксида кремния могут осаждаться как с легирующими добавками, так и без них. Важнейший параметр при осаждении SiO2 - воспроизводимость рельефа (рисунок 9).

Рисунок 9-Конформное воспроизведение. Толщина пленки на стенках ступеньки не отличается от толщины на дне и поверхности. Обусловлено быстрой поверхностной миграцией

В данном проекте в качестве изолирующей пленки между многоуровневой металлизацией используется нелегированный диоксид кремния, наносимый методом химического осаждения из газовой фазы (рисунок 10). Последний основан на использовании явления пиролиза или химических реакций при формировании пленок изолирующего материала.

Рисунок 10 - Установка формирования пленок методом химического осаждения из газовой фазы при нормальном давлении

В качестве химически активного газа применяют моносилан SiH4 и кислород, а в качестве буферного газа - азот.

SiH4 + O2 → SiO2 + 2H2

Такой процесс является самым низкотемпературным для получения качественных диэлектрических слоев SiO2 (реакцию проводят в диапазоне температур 200-400ºС). Недостатком является горючесть и взрывоопасность силана. Пленки формируются очень чистыми, но из-за низких температур получаются неплотными. Во избежание этого нужно строго регулировать концентрацию силана в газовой фазе и подавать его непосредственно на поверхности пластин, предотвращая рост SiO2 в газовой фазе .

3. нженерно-экономические расчеты

Тема проекта: Разработка технологического процесса изготовления полупроводниковых интегральных схем

Тип технологии: МОП транзистор с диодом Шоттки

Материал подложки: Si

Исходные данные по проекту:

Размер кристалла (чипа) 10х10 мм 2

Минимальная проектная норма элемента ИС 0,3мкм

Плотность дефектов на слой 0,1деф/см 2

Число слоев металлизации 1

Вычисление процента выхода годных структур на пластине (Y) производится по следующей формуле:

где D0 - удельная плотность дефектов, приходящихся на одну фотолитографию, деф/см2; A - активная площадь кристалла, см2; F - число фотолитографических процессов в полном технологическом цикле изготовления ИС.

Расчет общего объема выпуска годных изделий проводится по исходным данным. Выход годных структур на пластине: ,

где Aпл - активная площадь пластины диаметром 100 мм, A - площадь элемента, см2.

Годовой объем производства при запуске Z=300 пластин в сутки при условии, что процент выхода годных изделий на сборочных операциях W=95%:

Таблица. Расчет порогового напряжения МОП транзистора.

Na, см-31∙1016 => 1∙1022 м-3WH, мкм1,5 = 1,5∙10-6 мtox, нм40 => 4∙10-8 мLH, мкм1,5 = 1,5∙10-6 мL, мкм1,5 => 1,5∙10-6 мUDD, В3W, мкм16 => 1,6∙10-5 мεSi,11,9μn0.15εSi023.9ε08.85∙10-12 Ф/м2

8,6∙10-4 Ф/м

где, - поверхностный потенциал.

где,- падение напряжения на слое оксида.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе рассмотрена технология изготовления плат полупроводниковых интегральных микросхем. Полупроводниковая интегральная микросхема - это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки. Эти ИС составляют основу современной микроэлектроники. Размеры кристаллов у современных полупроводниковых интегральных микросхем достигают мм2, чем больше площадь кристалла, тем более многоэлементную ИС можно на ней разместить. При одной и той же площади кристалла можно увеличить количество элементов, уменьшая их размеры и расстояния между ними.

При использовании другого типа подзатворного диэлектрика, других металлов при формировании контактов с кремнием, других изолирующих слоев возможно получение более сложных схем с еще меньшим размером элементов.

Список использованных источников

1.Ежовский Ю.К. Основы тонкопленочного материаловедения и технологии интегральных устройств: Учебное пособие/ СПбГТИ.- СПб., 2005.-127с.

2.Интегральные устройства радиоэлектроники УМК, СЗТУ, СПб 2009

.Малышева И.А. Технология производства интегральных микросхем: Учебник для техникумов.- М.: Радио и связь., 1991. - 344с.

4. , Гуртов В.А. Твердотельная электроника: Учебное пособие. -Петрозаводск., 2005.-405с.

Цветов В.П. Технология материалов и изделий твердотельной электроники: Методические указания/ СПбГТИ.- СПб.,1998.-67с.

Http://www.analog.energomera.ru, Пластины кремния монокристаллического.

. , Курс лекций по дисциплине «Технология сбис».

3 ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ ПРОИЗВОДСТВА

ПОЛУПРОВОДНИКОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Технология производства полупроводниковых интегральных микросхем (ППИМС) развилась на основе планарной технологии транзисторов. Поэтому, чтобы разбираться в технологических циклах изготовления ИМС, необходимо ознакомиться с типовыми технологическими процессами, из которых эти циклы складываются.

3.1 Подготовительные операции

Монокристаллические слитки кремния, как и других полупро­водников, получают обычно путем кристаллизации из расплава - методом Чохральского . При этом методе стержень с затравкой (в виде монокристалла кремния) после соприкосновения с расплавом мед­ленно поднимают с одновременным вращением. При этом вслед за затравкой вытягивается нара­стающий и застывающий слиток.

Кристаллографическая ориентация слит­ка (его поперечного сечения) определяется кристаллографической ориентацией затрав­ки. Чаще других используются слитки с поперечным сечением, лежащим в плоско­сти (111) или (100).

Типовой диаметр слитков составляет в настоящее время 80 мм, а максимальный может достигать 300 мм и более. Длина слитков может достигать 1-1,5 м, но обычно она в несколько раз меньше.

Слитки кремния разрезают на множе­ство тонких пластин (толщиной 0,4-1,0 мм), на которых затем изготавливают интегральные схемы. Поверхность пластин после резки весьма неровная: размеры ца­рапин, выступов и ямок намного превышают размеры будущих эле­ментов ИС. Поэтому перед началом основных технологических операций пластины многократно шлифу - ют, а затем полируют. Цель шлифовки, помимо удаления механических дефектов, состоит также в том, чтобы обеспечить необходимую толщину пластины (200-500 мкм), недостижимую при резке, и параллельность пло­скостей. По окончании шлифовки на поверхности все же остается механически нарушенный слой толщиной в несколько микрон, под которым расположен еще более тонкий, так называемый физически нарушенный слой. Последний характерен наличием «незримых» искажений кристаллической решетки и механических напряжений, возникающих в процессе шлифовки.


Полировка состоит в удалении обоих нарушенных слоев и сни­жении неровностей поверхности до уровня, свойственного опти­ческим системам - сотые доли микрометра. Помимо механиче­ской, исполь­зуется химическая полировка (травление), т. е. по существу растворение поверхностного слоя полупроводника в тех или иных реактивах. Выступы и трещины на поверхности стравливаются быстрее, чем основной материал, и в целом поверхность выравни­вается.

Важным процессом в полупроводниковой технологии является также очистка поверхности от загрязнений органическими вещест­вами, особенно жирами. Очистку и обезжиривание проводят в ор­ганических растворителях (толуол, ацетон , этиловый спирт и др.) при повышенной температуре.

Травление, очистка и многие другие процессы сопровождаются отмывкой пластин в деионизованной воде.

3. 2 Эпитаксия

Эпитаксией называют процесс наращивания монокристалли­ческих слоев на подложку, при котором кристаллогра­фическая ориентация наращиваемого слоя повторяет кристаллографическую ориентацию подложки.

В настоящее время эпитаксия обычно используется для полу­чения тонких рабочих слоев до 15 мкм однородного полупроводника на сравнительно толстой подложке, играющей роль несущей конструк­ции.

Типовой - хлоридный процесс эпитаксии применительно к кремнию состоит в следующем (рисунок 3.1). Монокристаллические кремниевые пластины загружают в тигель «лодочку» и помещают в кварцевую трубу. Через трубу пропускают поток водорода , содержащий небольшую примесь тетрахлорида кремния SiCl4. При высокой температуре (около 1200° С) на поверхности пластин проис­ходит реакция SiCl4 + 2Н2 = Si + 4HC1.

В результате реакции на подложке постепенно осаждается слой чистого

кремния, а пары HCl уносятся потоком водорода. Эпитаксиальный слой осажденного кремния монокристалличен и имеет ту же кристаллографическую ориентацию, что и подложка. Хи­мическая реакция, благодаря подбору температуры, происходит только на поверхности пластины, а не в окружающем пространстве.

Рисунок 3.1 – Процесс эпитаксии

Процесс, проходящий в потоке газа, называют газотранспорт­ной реакцией, а основной газ (в данном случае водород), перенося­щий примесь в зону реакции, - газом-носителем.

Если к парам тетрахлорида кремния добавить пары соединений фосфора (РН3) или бора (В2Н6) , то эпитаксиальный слой будет иметь уже не собственную, а соответственно электрон­ную или дырочную проводимость (рисунок 3.2а), поскольку в ходе реакции в осаждающийся кремний будут внедряться донорные атомы фосфора или акцепторные атомы бора.

Таким образом, эпитаксия позволяет выращивать на подложке монокрис - тал­лические слои любого типа проводимости и любого удельного сопротив - ления, обладающие любым типом и ве­личиной проводимости, например, на рисунке 3.2а показан слой n, а можно сформировать слой n+ или р+.

Рисунок 3.2 – Подложки с эпитаксиальной и окисной пленками

Граница между эпитаксиальным слоем и подложкой не полу­чается идеально резкой, так как примеси в процессе эпитаксии частично диффундируют из одного слоя в другой. Это обстоятель­ство затрудняет создание сверхтонких (менее 1 мкм) и многослой­ных эпитаксиальных структур. Основную роль, в настоящее время, играет однослойная эпитаксия. Она существенно пополнила ар­сенал полупроводниковой технологии; получение таких тонких однородных слоевмкм), какие обеспечивает эпитаксия, невозможно иными средствами.


На рисунке 3.2а и последующих масштаб по вертикали не соблюдается.

В установке, показанной на рисунке 3.1, предусмотрены некоторые дополнительные операции: продувка трубы азотом и неглубокое травление поверхности кремния в парах НСl (с целью очистки). Эти операции проводятся до начала основных.

Эпитаксиальная пленка может отличаться от подложки по хи­мическому составу. Способ получения таких пленок называют гетероэпитаксией, в отличие от гомоэпитаксии, описанной выше. Конечно, при гетероэпитаксии и материалы пленки и подложки долж­ны по-прежнему иметь одинаковую кристаллическую решетку. Haпример, можно выращивать кремниевую пленку на сапфировой подложке.

В заключение заметим, что помимо описанной газовой эпитаксии, существует жидкостная эпитаксия, при которой наращивание монокристаллического слоя осуществляется из жид­кой фазы, т. е. из раствора, содержащего необходимые компоненты.

3.3 Термическое окисление

Окисление кремния - один из самых характерных процессов в технологии современных ППИМС. Получаемая при этом пленка дву­окиси кремния SiO2 (рисунок 3.2б) выполняет несколько важных функций, в том числе:

Функцию защиты - пассивации поверхности и, в частности, защиты вертикальных участков p- n переходов, выходящих на поверхность;

Функцию маски, через окна в которой вводятся необходимые примеси методом диффузии (рисунок 3.4б);

Функцию тонкого диэлектрика под затвором МОП-транзи­стора или конденсатора (рисунки 4.15 и 4.18в);

Диэлектрическое основание для соединения металлической пленкой элементов ПП ИМС (рисунок 4.1).

Поверхность кремния всегда покрыта «собственной» окисной пленкой, получающейся в результате «естественного» окисления при самых низких температурах. Однако эта пленка имеет слишком ма­лую толщину (около 5 нм), чтобы выполнять какую-либо из пере­численных функций. Поэтому при производстве полупроводниковых ИМС более толстые пленки SiO2 получа­ют искусственным путем.

Искусственное окисление кремния осуществляется обычно при высокой температуре (° С). Такое термическое окисление можно проводить в атмосфере кислорода (сухое окис­ление), в смеси кислорода с парами воды (влажное окисление ) или просто в парах воды.

Во всех случаях процесс проводится в окислительных печах. Основу таких печей составляет, как и при эпитаксии, кварцевая труба, в которой размещается «лодочка» с пластинами кремния, нагреваемая либо токами высокой частоты, либо иным путем. Че­рез трубу пропускается поток кислорода (сухого или увлажненного) или пары воды, которые реагируют с кремнием в высокотем­пературной зоне. Получаемая таким образом пленка SiO2 имеет аморфную структуру (рисунок 3.2б).

Очевидно, что скорость роста окисла со временем должна убы­вать, так как новым атомам кислорода приходится диффундировать через все более толстый слой окисла. Полуэмпирическая формула, связывающая толщину окисной пленки со временем термического окисления, имеет вид:

где k - параметр, зависящий от температуры и влажности кисло­рода.

Сухое окисление идет в десятки раз медленнее влажного. На­пример, для выращивания пленки SiO2 толщиной 0,5 мкм в сухом кислороде при 1000° С требуется около 5 ч, а во влажном - всего 20 мин. Однако, качество пленок, полученных во влажном кислороде, ниже. С уменьшением температуры на каждые 100° С время окис­ления возрастает в 2-3 раза.


В технологии ИМС различают «толстые» и «тонкие» окислы SiO2. Толстые окислы (d = 0,7-1,0 мкм) выполняют функции защиты и маскировки, а тонкие (d= 0,1-0,2 мкм) - функции подзатворного диэлектрика в МОП-транзисторах и конденсаторах.

Одной из важных проблем при выращивании пленки SiO2 яв­ляется обеспечение её однородности. В зависимости от качества поверхности пластины, от чистоты реагентов и режима выращи­вания в пленке возникают те или иные дефекты. Распространенным типом дефектов являются микро - и макропоры, вплоть до сквозных отверстий (особенно в тонком окисле).

Качество окисной пленки повышается с уменьшением темпе­ратуры ее выращивания, а также при использовании сухого кис­лорода. Поэтому тонкий подзатворный окисел, от качества которого зависит стабильность параметров МОП-транзистора, получают су­хим окислением. При выращивании толстого окисла чередуют су­хое и влажное окисление: первое обеспечивает отсутствие дефектов, а второе позволяет сократить время процесса.

Другие методы получения пленки SiO2 рассмотрены в .

3.4 Литография

В технологии полупроводниковых приборов важное место за­нимают маски: они обеспечивают локальный характер напыления, легирования, травления, а в некоторых случаях и эпитаксии. Всякая маска содержит совокупность заранее спроектированных от­верстий – окон. Изготовление таких окон есть задача литографии (гравировки). Ведущее место в технологии изготовления масок сох­раняют фотолитография и электронолитография .

3.4.1. Фотолитография. В основе фотолитографии лежит ис­пользование материалов, которые называют фоторезистами . Это разновидность фотоэмульсий, известных в обычной фотографии. Фоторезисты чувствительны к ультрафиолетовому свету, поэтому их можно обрабатывать в не очень затемненном помещении.

Фоторезисты бывают негативные и позитивные. Негативные фоторезисты под действием света полимеризуются и становятся устойчивыми к травителям (кислотным или щелочным). Значит, после локальной засветки будут вытравливаться не засвеченные участки (как в обычном фото негативе). В позитивных фоторезистах свет, наоборот, разрушает полимерные цепочки и, значит, будут вытравливаться засве­ченные участки.

Рисунок будущей маски изготав­ливается в виде так называемого фо ­тошаблона . Фотошаблон представляет собой толстую стеклян­ную пластину, на одной из сторон которой нанесена тонкая непрозрач­ная пленка с необходимым рисунком в виде прозрачных отверстий. Разме­ры этих отверстий (элементов рисунка) в масштабе 1: 1 соответствуют раз­мерам будущих элементов ИС, т. е. могут составлять 20-50 мкм и менее (до 2-3 мкм). Поскольку ИС изготавливаются групповым мето­дом, на фотошаблоне по «строкам» и «столбцам» размещается множество однотипных рисунков. Размер каждого рисунка соответствует размеру будуще­го кристалла ИС.

Процесс фотолитографии для получения окон в окисной маске SiO2, покрывающей поверхность кремниевой пластины, состоит в следующем (рисунок 3.3). На окисленную поверхность пластины наносится, например, негативный фото­резист (ФР). На пластину, покрытую фоторезистом, накладывают фотошаблон ФШ (рисунком к фоторезисту) и экспонируют его в ультрафиолетовых (УФ) лучах кварцевой лампы (рисунок 3.3а). После этого фотошаблон снимают, а фоторезист проявляют и закрепляют.

Если используется позитивный фоторезист, то после проявления и закрепления (которое состоит в задубливании и термо­обработке фоторезиста) в нем получаются окна на тех местах, ко­торые соответствуют прозрачным участкам на фотошаблоне.

Как говорят, рисунок перенесли с фотошаблона на фоторезист. Те­перь слой фоторезиста представляет собой маску, плотно при­легающую к окисному слою (рисунок 3.3б).

Через фоторезистивную мас­ку производится травление окисного слоя вплоть до крем­ния (на кремний данный травитель не действует). В качестве травителя используется плавиковая кислота и её соли. В результате рисунок с фоторе­зиста переносится на окисел. После удаления (стравлива­ния) фоторезистивной маски ко­нечным итогом фотолитогра­фии оказывается кремниевая пластина покрытая окисной маской с окнами (рисунок 3.3в). Через окна можно осуществлять диффузию, ионную имплантацию, травление и т. п.

Рисунок 3.3 – Процесс фотолитографии

В технологических циклах изготовления элементов ИМС процесс фотолитографии используется многократно (отдельно для получения базовых слоев, эмиттеров, омических контактов и т. д.). При этом возникает так называемая проблема совмещения фотошаблонов. При многократном использовании фотолитографии (в техноло­гии ППИМС до 5-7 раз) допуск на совмещение доходит до долей микрона. Техника совмещения состоит в том, что на фотошаблонах делают специальные «отметки» (например, крестики или квадраты), ко­торые переходят в рисунок на окисле и просвечивают сквозь тон­кую пленку фоторезиста. Накладывая очередной фотошаблон, аккуратнейшим образом (под микроскопом) совмещают отметки на окисле с аналогичными отметками на фотошаблоне.

Рассмотренный процесс фотолитографии характерен для полу­чения окисных масок на кремниевых пластинах с целью по­следующей локальной диффузии. В этом случае фоторезистивная ма­ска является промежуточной, вспомо­гательной, так как она не выдерживает высокой температуры, при которой проводится диффузия. Однако в некоторых случаях, когда процесс идет при низкой температуре, фоторезистивные ма­ски могут быть основными - рабочими. Примером может служить процесс создания металлической разводки в полупровод­никовых ИМС.

При использовании фотошаблона его эмульсионный слой изна­шивается (стирается) уже после 15-20 наложений. Срок службы фотошаблонов можно увеличить на два порядка и более путем металлизации: заменяя пленку фото­эмульсии на пленку износостойкого металла, обычно хрома.

Фотошаблоны изготавливаются комплектами по числу операций фотолитографии в технологическом цикле. В пределах комплекта фотошаблоны согласованы, т. е. обеспечивают совме­щение рисунков при совмещении соответствующих отметок.

3.4.2 Электронолитография. Описанные методы долгое время составляли одну из основ микроэлектронной технологии. Они и до сих пор не потеряли своего значения. Однако по мере по­вышения степени интеграции и уменьшения размеров элементов ИС возник ряд проблем, которые частично уже решены, а частично находятся в стадии изучения.

Одно из принципиальных ограничений касается разрешающей способ - ности , т. е. минимальных размеров в создаваемом рисунке маски. Дело в том, что длины волн ультрафиолетового света со­ставляют 0,3-0,4 мкм. Следова - тельно, каким бы малым не было отверстие в рисунке фотошаблона, размеры изображения этого отверстия в фоторезисте не могут достигать указанных значений (из-за дифракции). Поэтому, минимальная ширина элементов составляет около 2 мкм, а при глубоком ультрафиолете (длина волны 0,2-0,3 мкм) – около 1 мкм. Между тем размеры порядка 1-2 мкм уже оказываются недостаточно малыми при соз­дании больших и сверхбольших ИМС.

Наиболее очевидный путь для повышения разрешающей спо­собности лито - графии - использование при экспозиции более ко­ротковолновых излучений.

За последние годы разработаны методы электронной литогра­фии. Их сущность состоит в том, что сфокусированный пучок элек­тронов сканируют (т. е. перемещают «построчно») по поверхности пластины, покрытой электронорезистом, и управляют интенсивностью пучка в соответствии с заданной программой. В тех точках, которые должны быть «засвечены», ток пучка максимален, а в тех, которые должны быть «затемнены», - равен нулю. Диаметр пучка электронов находится в прямой зависимости от тока в пучке: чем меньше диаметр, тем меньше ток. Однако с уменьшением тока растет время экспозиции. Поэтому повышение разрешающей способности (уменьшение диаметра пучка) сопровождается увеличением дли­тельности процесса. Например, при диаметре пучка 0,2-0,5 мкм время сканирования пластины, в зависимости от типа электронорезиста и раз­меров пластины, может лежать в пределах от десятков минут до не­скольких часов.

Одна из разновидностей электронной литографии основана на отказе от электронорезистивных масок и предусматривает воздействие электрон­ного пучка непосредственно на окисный слой SiO2. Оказывается, что в местах «засветки» этот слой в дальнейшем травится в несколь­ко раз быстрее, чем в «затемненных» участках.

Минимальные размеры при электронолитографии составляют 0,2 мкм, хотя предельно достижимы – 0,1 мкм.

В стадии исследования находятся другие методы литографии, например, мягкое рентге­новское излучение (с длинами волн 1-2 нм) позволяет получить минимальные размеры 0,1 мкм, а ионно-лучевая литография 0,03 мкм.

3.5 Легирование

Внедрение примесей в исходную пластину (или в эпитаксиальный слой) путем диффузии при высокой температуре является ис­ходным и до сих пор основным способом легирования полупровод­ников с целью создания транзисторных структур и на их основе других элементов. Однако за последнее время широкое распространение получил и другой способ легирования - ионная имплантация.

3.5.1 Способы диффузии. Диффузия может быть общей и локальной. В первом случае она осуществляется по всей поверхности пластины (рисунок 3.4а), а во втором - на определенных участках пла­стины через окна в маске, например, в толстом слое SiO2 (рисунок 3.4б).

Общая диффузия приводит к образованию в пластине тон­кого диффузионного слоя, который отличается от эпитаксиального неоднородным (по глубине) распределением примеси (см. кривые N(x) на рисунках 3.6а и б).

Рисунок 3.4 – Общая и локальная диффузии

В случае локальной диффузии (рисунок 3.4б) примесь распространяется не только в глубь пластины, но и во всех перпендикулярных на­правлениях, т. е. под маску. В результате этой так называемой боковой диффузии участок р-n перехода, выходящий на по­верхность, оказывается «автоматически» защищенным окислом. Соотношение между глубинами боковой и основной -

«вертикальной» диффузии зависит от ряда факторов, в том числе от глубины диффузионного слоя. Типичным для глубины боковой диффузии можно считать значение 0,8×L.

Диффузию можно проводить однократно и многократно. На­пример, в исходную пластину n-типа можно во время 1-й диффузии внедрить акцеп - торную примесь и получить р-слой, а затем во время 2-й диффузии внедрить в полученный р-слой (на меньшую глубину) донорную примесь и тем самым обеспечить трехслойную структуру. Соответственно различают двойную и тройную диффузию (см раздел 4.2).

При проведении многократной диффузии следует иметь в виду, что концентрация каждой новой вводимой примеси должна превышать концен - трацию предыдущей, в противном случае тип проводи­мости не изменится, а значит, не образуется р-n переход. Между тем концентрация примеси в кремнии (или другом исходном мате­риале) не может быть сколь-угодно большой: она ограничена особым параметром - предельной растворимостью примеси NS . Предельная растворимость зависит от температуры. При некоторой темпера­туре она достигает максимального значения, а затем снова уменьшается. Максимальные предельные растворимости вместе с со­ответствующими температурами приведены в таблице 3.1.

Таблица 3.1

Следовательно, если проводится многократная диффузия, то для последней диффузии нужно выбирать материал с максимальной предельной растворимостью. Поскольку ассортимент примесных материалов ограничен,

не удается обеспечить более 3-х последо­вательных диффузий.

Примеси, вводимые путем диффузии, называют диффузантами (бор, фосфор и др.). Источниками диффузантов являются их химические соединения. Это могут быть жидкости (ВВr3, РОСl), твердые тела (В2О3, P2O5) или газы (В2Н6, РН3).

Внедрение примесей обычно осуществляется с помощью газотран - спортных реакций - так же, как при эпитаксии и окислении. Для этого используются либо однозонные, либо двухзонные диф­фузионные печи .

Двухзонные печи используются в случае твердых диффузантов. В таких печах (рисунок 3.5) имеются две высокотемпературные зоны, одна - для испарения источника диффузанта, вторая - собственно для диффузии.

Рисунок 3.5 - Процесс диффузии

Пары источника диффузанта, полученные в 1-й зоне, примешиваются к по - току нейтрального газа-носителя (напри­мер, аргона) и вместе с ним доходят до 2-й зоны, где расположены пластины кремния. Температура во 2-й зоне выше, чем в 1-й. Здесь атомы диффузанта внедряются в пластины, а другие составляющие химического соединения уносятся газом-носителем из зоны.

В случае жидких и газообразных источников диффузанта нет необходи - мости в их высокотемпературном испарении. Поэтому ис­пользуются однозон - ные печи, как при эпитаксии, в которые источник диффузанта поступает уже в газообразном состоянии.

При использовании жидких источников диффузанта диффузию проводят в окислительной среде, добавляя к газу-носителю кисло­род. Кислород окисляет поверхность кремния, образуя окисел SiO2, т. е. в сущности - стекло. В присут - ствии диффузанта (бора или фосфора) образуется боросиликатное или фосфорносиликатное стекло. При температуре выше 1000оС эти стекла находятся в жид­ком состоянии, покрывая поверхность кремния тонкой пленкой, так что диффузия примеси идет, строго говоря, из жидкой фазы. После застывания стекло защищает поверхность кремния в местах диффузии,

т. е. в окнах окисной маски. При использовании твердых источников диффузанта - окислов - образование стекол происходит в процессе диффузии без специально вводимого кислорода.

Различают два случая распределения примеси в диффузионном слое.

1 Случай неограниченного источника примеси. В этом случае диф-фузант непрерывно поступает к пластине, так что в её приповерхностном слое концентрация примеси поддерживается постоянной равной NS. С увеличением времени диффузии увеличивается глубина диффузионного слоя (рисунок 3.6а).

2 Случай ограниченного источника примеси. В этом случае сначала в тонкий приповерхностный слой пластины вводят некоторое количество атомов диффузанта (время t1), а затем источник диффузанта отключают и атомы примеси перераспределяются по глубине пластины при неизменном их общем количестве (рисунок 3.6б). При этом концентрация примеси на поверхности снижается, а глубина диффузионного слоя увеличивается (кривые t2 и t3). Первую стадию процесса называют ²загонкой², вторую - ²разгонкой² примеси.

Рисунок 3.6 – Распределение диффузанта

3.5.2 Ионная имплантация.

Ионной имплантацией называют метод легирования пластины (или эпитаксиального слоя) путем бомбардировки ионами примеси, ускоренными до энергии, доста­точной для их внедрения в глубь твердого тела.

Ионизация атомов примеси, ускорение ионов и фокусировка ионного пучка осуществляются в специальных установках типа ускорителей частиц в ядерной физике. В качестве примесей ис­пользуются те же материалы, что и при диффузии.

Глубина внедрения ионов зависит от их энергии и массы. Чем больше энергия, тем больше получается толщина имплантирован­ного слоя. Однако с ростом энергии возрастает и количество ра­диационных дефектов в кристалле, т. е. ухудшаются его электрофи­зические параметры. Поэтому энергию ионов ограничивают вели­чиной 100-150 кэВ. Нижний уровень составляет 5-10 кэВ. При таком диапазоне энергии глубина слоев лежит в пределах 0,1 - 0,4 мкм, т. е. она значительно меньше типичной глубины диффузионных слоев.

Концентрация примеси в имплантированном слое зависит от плотности тока в ионном пучке и времени процесса или, как говорят, от времени экспо -зиции. В зависимости от плотности тока и жела­емой концентрации время экспозиции составляет от нескольких секунд до 3-5 мин и более (иногда до

1-2 ч). Разу­меется, чем больше время экспози­ции, тем опять же больше количест­во радиационных дефектов.

Типичное распределение примеси при ионной имплантации показано на рисунке 3.6в сплошной кривой. Как видим, это распределение существенно отличается от диффузионного наличием максимума на определенной глубине.

Поскольку площадь ионного пуч­ка (1-2 мм2) меньше площади пла­стины (а иногда и кристалла), при­ходится сканировать пучок, т. е. плавно или «шага - ми» перемещать его (с помощью специальных отклоняющих систем) пооче - редно по всем «строкам» пластины, на которых расположены отдельные ИМС.

По завершении процесса легирования пластину обязательно под­вергают отжигу при температуре ° С для того, чтобы упо­рядочить кристал - лическую решетку кремния и устранить (хотя бы частично) неизбежные радиа-ционные дефекты. При температуре отжига процессы диффузии несколько меняют профиль распре­деления (см. штриховую кривую на рисунке 3.6в).

Ионная имплантация проводится через ма­ски, в которых длина пробега ионов должна быть значительно мень­ше, чем в кремнии. Материалом для масок могут служить распро­страненные в ИМС двуокись кремния или алюминий . При этом важным достоинством ионной имплантации является то, что ионы, двигаясь по прямой линии, внедряются только в глубь пластины, а анало­гия боковой диффузии (под маску) практиче­ски отсутствует.

В принципе ионную имплантацию, как и диффузию, можно проводить многократно, «встраивая» один слой в другой. Однако сочетание энергий, времен экспозиции и режимов отжига необхо­димое для многократной имплантации, оказывается затруднитель­ным. Поэтому ионная имплантация получила главное распростра­нение при создании тонких одинарных слоев.

3.6 Нанесение тонких пленок

Тонкие пленки не только являются основой тонкопленочных гибридных ИМС, но широко используются и в полупроводниковых интеграль­ных схемах. Поэтому методы получения тонких пленок относятся к общим вопросам технологии микроэлектроники.

Существует три основных метода нанесения тонких пленок на подложку и друг на друга: термическое (вакуумное) и ионо-плазменное напыление, которое имеет две разновидности: катодное напыление и собственно ионно-плазменное.

3.6.1 Термическое (вакуумное) напыление.

Принцип этого метода напыления показан на рисунке 3.7а. Металлический или стеклянный колпак 1 расположен на опорной плите 2. Между ними находится проклад­ка 3, обеспечивающая поддержание ва­куума после откачки воздуха из подколпачного пространства. Подложка 4, на которую проводится напыление, закреплена на держателе 5. К держателю примыкает нагреванапыление проводится на нагретую подложку). Испари­тель 7 включает в себя нагреватель и источник напыляемого вещества. Пово­ротная заслонка 8 перекрывает поток паров от испарителя к подложке: напы­ление длится в течение времени, когда заслонка открыта.

Нагреватель обычно представляет собой нить или спираль из тугоплавко­го металла (вольфрам, молибден и др.), через которую пропускается достаточно большой ток. Источник напыляемого вещества связывается с нагревателем по-разному: в виде скобок («гусариков»), навешиваемых на нить накала; в виде небольших стержней, охватываемых спиралью, в виде порошка, засыпанного в

Рисунок 3.7 – Нанесение пленок

тигель, нагреваемый спиралью, и т. п. Вместо нитей накала в по­следнее время используют нагрев с помощью электронного луча или луча лазера.

На подложке создаются наиболее благоприятные условия для конденсации паров, хотя частично конденсация происходит и на стенках колпака. Слишком низкая температура подложки пре­пятствует равномерному распределению адсорбируемых атомов: они группируются в «островки» разной толщины, часто не связанные друг с другом. Наоборот, слишком высокая температура под­ложки приводит к отрыву только что осевших атомов, к их «реиспарению». Поэтому для получения качественной пленки температура подложки должна лежать в некоторых оптимальных пределах (обычно 200-400° С). Скорость роста пленок в зависимости от ряда факторов (температура подложки, рас­стояние от испарителя до подложки, тип напыляемого материала и др.) лежит в пределах от десятых долей до десятков нанометров в секунду.

Прочность связи - сцепления пленки с подложкой или другой пленкой - называется адгезией . Некоторые распространенные ма­териалы (например, золото) имеют плохую адгезию с типичными под­ложками, в том числе с кремнием. В таких случаях на подложку сна­чала наносят так называемый подслой , характерный хорошей адге­зией, а затем на него напыляют основной материал, у которого адгезия с подслоем тоже хорошая. Например, для золота подслоем могут быть никель или титан.

Для того чтобы атомы напыляемого материала, летящие от испарителя к подложке, испытывали минимальное количество столкновений с атомами оста­точного газа и тем самым минимальное рассеяние, в подколпачном пространстве нужно обеспечивать достаточно высокий вакуум. Критерием необходимого вакуума может служить условие, чтобы средняя длина свободного пробега атомов в несколько раз превышала расстояние между испарителем и подложкой. Однако этого условия часто недостаточно, так как любое количество остаточного газа чревато загрязнением напыляемой пленки и изменением ее свойств. Поэтому в принципе вакуум в установках термического напыления должен быть как можно более высоким. В настоящее время вакуум ниже 10-6 мм рт. ст. считается неприемлемым, а в ряде первоклассных напылительных установок он доведен до 10-11 мм рт. ст.

Основным материалом, на основе которого изготовляют полупроводниковые ИМС, является кремний, так как на его основе можно получить пленку двуокиси кремния с высокими показателями и сравнительно простыми способами.

Кроме того, следует иметь в виду и другие достоинства кремния по сравнению с германием: большая ширина запрещенной зоны, и, следовательно, меньшее влияние температуры, меньшие обратные токи неосновных носителей заряда; меньшая диэлектрическая проницаемость, следовательно, меньшие барьерные емкости при прочих равных условиях.

Для придания кремнию определенного типа проводимости в кристалл вводят донорные и акцепторные примеси, в результате чего в каждой области Р- или N-кремния имеются основные и неосновные носители заряда. Движение носителей заряда в полупроводниковых структурах ИМС происходит как обычно: либо в виде диффузии за счет разности концентрации носителей заряда, либо в виде дрейфа под действием сил электрического поля. В образующихся PN-переходах происходят обычные явления, описанные ранее.

Основная технология изготовления полупроводниковых ИМС - планарная. Свойства ИМС во многом определяются технологией их создания.

Рассмотрим только некоторые особенности применения планарной технологии при изготовлении ИМС.

Очистка поверхности. Следует иметь в виду, что любые загрязнения поверхности подложки отрицательно скажутся на свойствах ИМС и ее надежности. Необходимо учитывать и то, что размеры элементов ИМС соизмеримы с малейшей пылинкой. Отсюда и необходимость в самой тщательной очистке поверхности. Очистка производится с помощью органических растворителей, для более тщательной очистки применяют ультразвуковые методы, так как вибрация ускоряет растворение загрязняющих примесей. На заключительном этапе пластины кремния отмывают деионизированной водой.

Термическое окисление поверхности . Оно проводится для создания на поверхности пластины защитного слоя, предохраняя поверхность от воздействия окружающей среды в процессе создания ИМС. В ИМС, созданных на основе МДП-транзисторов, полученная путем окисления пленка служит диэлектриком для затвора.

Легирование . Это - введение примесей в чистый кремний для получения переходов с целью создания диодных и транзисторных структур. Есть два способа легирования - с помощью диффузии и внедрением ионов примеси.

В самое последнее время широко используют метод ионного внедрения, благодаря ряду его достоинств, в первую очередь более низким температурам по cравнению с методом диффузии.

Сущность метода заключается во внедрении в пластину чистого кремния примесных ионов, которые занимают места в узлах кристаллической решетки. Ионы примеси создаются, ускоряются, фокусируются и отклоняются в специальных установках и, попадая на поверхность пластины, бомбардируют ее, внедряясь в кристаллическую структуру решетки. Отклонение производится в магнитном поле. Напомним, что радиус отклонения при этом зависит от массы заряженных частиц. Поэтому если в сфокусированном пучке имеются посторонние ионы, они отклонятся по другим траекториям и отделятся от основного пучка донорной или акцепторной примеси. В этом еще одно достоинство данного метода - высокая чистота примесей.

Фотолитография . Позволяет получить заданное расположение элементов и является одним из наиболее характерных технологических процессов создания ИМС. Напомним, что фотолитография основана на использовании светочувствительных свойств особых материалов, называемых фоторезистами.

По мере развития техники ИМС все более существенными становятся недостатки, присущие данному способу: возможности получения минимальных размеров рисунка на фотошаблоне и механический контакт фотошаблона с пластиной полупроводника приводит к искажениям рисунка.

В последнее время разработан метод электронной литографии. В основе его лежит перемещение сфокусированного электронного луча по поверхности пластины, покрытой резистом. Ток луча управляется напряжением, которое меняется в зависимости от того, на каком участке поверхности находится луч. Если требуется получить окно, ток луча максимален, на тех участках, которые должны остаться без изменения, ток луча близок к нулю.

Металлизация для создания внутрисхемных соединений в ИМС. Внутрисхемные соединения в ИМС выполняют с помощью тонких металлических пленок, нанесенных на окисле кремния, который является изолятором. Наиболее соответствующим основным требованиям к соединительному элементу для ИМС оказался алюминий, имеющий большую удельную проводимость, отсутствие коррозии, допускающий возможность сварных контактов с внешними выводами.

Создание нужного рельефа металлических соединений происходит методом фотолитографии. На поверхность окиси кремния наносится сплошная пленка алюминия. Пленку покрывают фоторезистом, над ним располагают фотошаблон, а затем вытравливают алюминий, оставляя только полоски, создающие соответствующие контакты со слоями подложки в ранее сделанных окнах, которые были созданы для получения нужной структуры слоев в ИМС.

Анализ основных операций показывает, что все они сводятся к трем основным - термической обработке, химической обработке и фотолитографии. Создание пленки двуокиси кремния, которая защищает переходы от окружающей среды в процессе создания ИМС, является важным фактором, обеспечивающим стабильность параметров и надежность ИМС.

Изменением рисунка фотошаблона и режима термической обработки можно создавать различные схемы ИМС. Основными структурами для изготовления элементов ИМС являются биполярные и МДП-транзисторы.

Описание схемы

1. Номиналы пассивных элементов:

R6 = R11 = 4.7 кОм

  • 2. Т1, Т2, Т3, Т4, Т5 - n-p-n транзисторы ИС; Т6 - p-n-p транзистор ИС;
  • 3. с=200 Ом/кВ
  • 4. Напряжение питания 15В
  • 5. Технология планарно-эпитаксиальная.
  • 6. Изоляция p-n переходом.

Вывод 6 - питание; вывод 1 - земля.

Технология изготовления ИМС

Любые элементы полупроводниковых ИМС можно создать на основе максимум трех p-n-переходов и четырех слоев двух типов электропроводности (электронной и дырочной). Изоляция элементов часто осуществляется с помощью обратно смещенного p-n- перехода. Принцип этого способа изоляции заключается в том, что подачей большого отрицательного потенциала на p-подложку получают обратно смещенный p-n-переход на границе коллекторных областей и p-подложки. Сопротивление обратно смещенного p-n- перехода большое и достигает МОм, поэтому получается хорошая изоляция элементов друг от друга.

Технология производства полупроводниковых ИМС представляет собой сложный процесс, включающий десятки операций, и описать его полностью в кратком методическом пособии и курсовой работе невозможно.

Поэтому мы рассмотрим сокращенный маршрут изготовления ИМС с изоляцией элементов и обратно смещенными p-n-переходами методом планарно-эпитаксиальной технологии. Операция изоляции элементов осуществляется групповым методом, сочетается с технологией изготовления ИМС в целом и реализуется методом разделительной (изолирующей) диффузии на всю глубину эпитаксиального слоя. Эта технология позволяет получать необходимую степень легирования коллектора и подложки независимо друг от друга. При выборе высокоомной подложки и не очень высокоомного эпитаксиального слоя (коллектора) можно обеспечить оптимальные емкости перехода коллектор-база и его напряжение пробоя. Наличие эпитаксиального слоя позволяет точно регулировать толщину и сопротивление коллектора, которое, однако, остается достаточно высоким (70-100 Ом). Снижение сопротивления коллектора достигается созданием высоколегированного скрытого n + -слоя путем диффузии в p-подложку примеси n-типа перед наращиванием эпитаксиального слоя. Этот слой обеспечивает низкоомный путь току от активной коллекторной зоны к коллекторному контакту без снижения пробивного напряжения перехода коллектор-база.

Последовательность операций планарно-эпитаксиальной технологии производства биполярных полупроводниковых ИМС с изоляцией элементов p-n- переходами:

  • 1) Механическая обработка поверхности рабочей стороны кремниевой пластины p-типа до 14-го класса чистоты и травление в парах HCl для удаления нарушенного слоя. Сначала пластины Si шлифуют до заданной толщины, затем полируют, подвергают травлению и промывают.
  • 2) Окисление для создания защитной маски при диффузии примеси n-типа. На поверхности кремния выращивается плотная пленка двуокиси кремния (SiO2), которая имеет близкие к кремнию коэффициент теплового расширения, что позволяет использовать ее как маску при диффузии. Наиболее технологичным методом получения пленок SiO2 является термическое окисление поверхности кремния. В качестве окисляющей среды используется сухой или увлажняющий кислород либо пары воды. Температура рабочей зоны при окислении 1100-1300С. Окисление проводится методом открытой трубы в потоке окислителя. В сухом кислороде выращивается наиболее совершенный по структуре окисный слой, но процесс окисления при этом проходит медленно (при Т=1200С, толщина слоя SiO2 составляет 0,1 мкм). На практике целесообразно проводить окисление в три стадии: в сухом кислороде, влажном кислороде и снова в сухом. Для стабилизации свойств защитных окисных слоев в процессе окисления в среду влажного кислорода или паров воды добавляют борную кислоту, двуокись титана и др.

3) Фотолитография для вскрытия окон в окисле и проведение локальной диффузии в местах формирования скрытых слоев (рис. 3). Фотолитография это создание на поверхности подложки защитной маски малых размеров практически любой сложности, используемой в дальнейшем для проведения диффузии, эпитаксии и других процессов. Образуется она с помощью специального слоя, который называется фоторезист - материал, который меняет свою структуру под действием света. По способности изменять свойства при облучении фоторезисты бывают негативные и позитивные.

Фоторезист должен быть чувствительным к облучению, иметь высокую разрешающую способность и кислотостойкость.

На окисленную поверхность кремния с толщиной окисла 3000-6000 Г наносят слой фоторезиста с помощью центрифуги. Фоторезист сушат сначала при комнатной, затем при температуре 100-150 С.

Подложку совмещают с фотошаблоном и освещают. Засвеченный фоторезист проявляют, а затем промывают в деионизированной воде. Оставшийся фоторезист задубливают при комнатной температуре и температуре 200С в течении одного часа, после чего окисленная поверхность кремния открывается в местах, соответствующих рисунку фотошаблона.

4) Диффузия для создания скрытого n+ слоя (рис. 4). Локальная диффузия является одной из основных технологических операций при создании полупроводниковых ИМС. Процесс диффузии определяет концентрационный профиль интегральной структуры и основные параметры компонентов ИМС. Диффузия в полупроводниковых кристаллах представляет собой направленное перемещение примесных атомов в сторону убывания их концентрации. При заданной температуре скорость диффузии определяется коэффициентом диффузии, который равен числу атомов, проходящих через поперечное сечение в 1 см2 за 1 с при градиенте концентрации 1 см-4. В качестве легирующих примесей в кремнии используется в основном бор и фосфор, причем бор создает примеси акцепторного типа, а фосфор-донорного. Для бора и фосфора энергия активации соответственно равна 3,7 и 4,4 эВ.

В производстве ИМС реализуют два типа диффузии. Диффузия из неограниченного источника представляет собой первый этап диффузии, в результате которого в полупроводник вводится определенное количество примеси. Этот процесс называют загонкой примеси .

Для создания заданного распределения примеси в глубине и на поверхности полупроводника проводится второй этап диффузии из ограниченного источника. Этот процесс называется разгонкой примеси .

5) Снятие окисла и подготовка поверхности перед процессом эпитаксии (рис. 5).

6) Формирование эпитаксиальной структуры (рис. 6). Эпитаксия представляет собой процесс роста монокристалла на ориентирующей подложке. Эпитаксиальный слой продолжает кристаллическую решетку подложки. Толщина его может быть от монослоя до нескольких десятков микрон. Эпитаксиальный слой кремния можно вырастить на самом кремнии. Этот процесс называется авто- или гомоэпитаксия. В отличии от автоэпитаксии процесс выращивания монокристаллических слоев на подложках, отличающихся по химическому составу, называется гетероэпитаксией.

Эпитаксиальный процесс позволяет получать слои полупроводника, однородные по концентрации примесей и с различным типом проводимости (как электронным, так и дырочным). Концентрация примесей в слое может быть выше и ниже, чем в подложке, что обеспечивает возможность получения высокоомных слоев на низкоомной подложке. В производстве эпитаксиальные слои получают за счет реакции на поверхности подложки паров кремниевых соединений с использованием реакций восстановления SiCl 4 , SiBr 4 . В реакционной камере на поверхности подложки в температурном диапазоне 1150-1270С протекает реакция

SiCl4+2H2=Si+4HCl,

в результате которой чистый кремний в виде твердого осадка достраивает решетку подложки, а летучее соединение удаляется из камеры.

Процесс эпитаксиального наращивания проводится в специальных установках, рабочим объемом в которых является кварцевая труба, а в качестве газа-носителя используется водород и азот.

Толщина эпитаксиального слоя n-типа составляет 10-15 мкм с удельным сопротивлением 0,1-10 Ом*см. В эпитаксиальном слое формируются коллекторы транзисторов и карманы резисторов.

7) Окисление поверхности эпитаксиального слоя для создания защитной маски при разделительной диффузии (рис. 7).

8) Фотолитография для вскрытия окон под разделительную диффузию (рис. 8).

9) Проведение разделительной диффузии и создание изолированных карманов (рис. 9).

Разделительная диффузия проводится в две стадии: первая (загонка)- при температуре 1100-1150С, вторая (разгонка)- при температуре 1200-1250С. В качестве диффузанта используется бор. Разделительная диффузия осуществляется на всю глубину эпитаксиального слоя; при этом в подложке кремния формируются отдельные области полупроводника, разделенные p-n-переходами. В каждой изолированной области в результате последующих процессов формируется интегральный элемент.

10) Окисление поверхности для проведения фотолитографии под базовую диффузию (рис. 10).

11) Фотолитография для вскрытия окон под базовую диффузию (рис. 11).

12) Формирование базового слоя диффузией примеси p-типа (рис. 12).

13) Окисление поверхности для проведения четвертой фотолитографии (рис. 13).

14) Фотолитография для вскрытия окон под эмиттерную диффузию (рис. 12).

15) Формирование эмиттерного слоя диффузией примеси n-типа, а также последующее окисление поверхности (рис. 15).

Эмиттерная диффузия проводится в одну стадию при температуре около 1050С. Одновременно с эмиттерами формируются области под контакты коллекторов. В качестве легирующей примеси используется фосфор. Толщина слоя d ? 0,5-2,0 мкм, концентрация акцепторов N ?10 21 cм -3 Используется для создания эмиттеров транзисторов, низкоомных резисторов, подлегирования коллекторных контактов и др.

16) Пятая фотолитография для вскрытия контактных окон (рис. 16).

17) Напыление пленки алюминия (рис. 17).

Соединения элементов ИМС создаются металлизацией. На поверхность ИМС методом термического испарения в вакууме наносится слой алюминия толщиной 1 мкм.

18) Фотолитография для создания рисунка разводки и нанесение слоя защитного диэлектрика (рис. 18).

После фотолитографии металл обжигается в среде азота при температуре 500С.

Расчет интегральных компонентов