Как подключить магнитный пускатель. Магнитный пускатель: назначение, устройство, схемы подключения Эл схема пускателя эл двигателя

Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим. Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже).
Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать.
Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

На сегодня, в устройстве различного электрооборудования используются коммутирующие пусковые электромагнитные аппараты. Они являются промежуточным звеном между силовыми частями и системами управления электрооборудования, контролируя включение и отключение электрических цепей. О том, как устроены магнитные пускатели, какие виды устройств существуют, и в чем заключается их назначение – читайте ниже.

Магнитный пускатель: устройство и принцип действия, комплектация

Магнитный электрический пускатель – это низковольтное устройство контроля и распределения токовой энергии. Конструкция устройства достаточно простая: аппарат состоит из двух частей – верхней и нижней, объединенных в пластмассовый корпус.

В верхней части пускателя располагается:

  • Блок подвижных контактов;
  • Дугогасительная решетка;
  • Подвижная часть электромагнита.

Контактный силовой блок, при этом, тесно связан с подвижной частью электромагнита. Дугогасительная решетка в устройстве выполняет роль аппарата, служащего для предостережения и ликвидации возгораний электродуги. По полозьям в верхней части устройства скользит траверса с якорем магнитной системы и мостиками силовых и дополнительных контактов с пружинами.

Нижняя часть электромагнитного устройства имеет в своей конструкции:

  • Втягивающую катушку;
  • Возвратную пружину;
  • Часть электромагнита.

Втягивающая катушка имеет цилиндрическую форму и обмотку из медного проводника. Количество витков катушки зависит от расчетного питающего напряжения. Магнит в устройстве состоит из Ш-образных, стальных, электромагнитных пластин. Якорь и сердечник составляют магнитопровод.

Принцип работы устройства достаточно прост: он основывается на воздействии магнитного поля на различные подвижные части пускателя.

Так, ток подается на катушку, расположенную на сердечнике. После прекращения подачи тока магнитное поле исчезает, возвратная пружина отправляет верхнюю часть устройства на исходное место. При этом, контакты, бывшие разомкнутыми замыкаются, а замкнутые – размыкаются.

Силовая контактная система: устройство магнитного пускателя

Современные магнитные пускатели могут оснащаться дополнительными устройствами защиты и управления. Чаще всего, пускатели укомплектовывают тепловыми реле аварийного отключения, слаботочными контактными пусковыми группами управления. Размножение контактов при модификации магнитного пускателя выполняется через контактный блок. Поэтому, контактную систему пускателя называют приставкой.


Контактная силовая система трехфазного магнитного пускателя состоит из трех силовых (главных) контактов и одного вспомогательного.

Силовые контакты используют для коммутации мощной нагрузки. Поэтому их делают из медных перемычек с нанесением технического серебра. Дополнительный контакт в блоке выступает блокировочным: при использовании стандартной схемы подключения, он фиксирует пускатель в рабочем состоянии.

В зависимости от типа влияния на электрическую цепь силовые контакты делятся на:

  • Нормально-замкнутые;
  • Нормально-разомкнутые.

Контакты срабатывают при попадании тока на втягивающую катушку пускателя. Во время этого сердечник тянет за собой контакты, что делает нормально-замкнутые контакты разомкнутыми, а нормально-разомкнутые замкнутыми.

Дополнительные контакты для пускателей с задержкой времени

Для увеличения количества силовых контактов электромагнитного аппарата используют дополнительные приставки. При этом, контакты в таких приставках подбираются с учетом максимального тока основных. Так, для пускателей первой и второй величин ток дополнительных контактов должен быть равен току основных или быть меньше максимального значения. Отдельно выделяют дополнительные контакты (приставки) с задержкой срабатывания. Главной задачей таких приставок является выдержка определенного времени при включении и отключении аппарата.

Пневматические приставки применяют в схемах управления электрическими приводами:

  • При напряжении постоянного тока мощностью в 440 В и частотой в 50 Гц;
  • При напряжении переменного тока мощностью в 660 В и частотой в 60 Гц.

Если пневматическая ПВЛ приставка уже установлена, для того, чтобы увеличить количество вспомогательных контактов электрической цепи управления используют контактную боковую приставку серии ПКБ. Монтаж приставки выполняют посредством специальных защелок на ее корпусе.

Какие бывают магнитные пускатели

Магнитные электрические пускатели различают по их способности работать с нагрузками разных мощностей. Отечественные пускатели делятся на 7 групп и могут коммутировать мощность в диапазоне от 7,5 до 45 кВт.


Кроме того, по конструкции и принципу действия пускатели делятся на:

  • Реверсивные (например, ПМЛ 1502, 3100);
  • Нереверсивные (например, пускатель ПМЕ 211, ПАЕ 311 или “лягушка”).

Реверсивные пускатели имеют в своей конструкции два магнита, благодаря чему способны раскручивать двигать в любую сторону в зависимости от команды оператора. При этом, независимо от того как устроен пускатель он может иметь или не иметь защиту от перегрузок.

По месту установки магнитные пускатели бывают закрытого и открытого типа.

Отдельно выделяют пыленепроницаемые электромагнитные контакторы. Первые типы пускателей устанавливают в стандартных местах, которые не отличаются большим скоплением пыли, механическими воздействиями посторонних предметов (например, электрических шкафов). Пыленепроницаемые же пускатели не подвержены влиянию солнечных лучей и осадков, и могут устанавливаться под навесами на улице. Для идентификации типа пускателя придумана стандартизированная расшифровка, которая позволяет определить значение каждой буквы и цифры в обозначении на электрическом аппарате.

Основные функции и назначение магнитного пускателя

Для чего нужен магнитный пускатель? Главное назначение пускового электромагнитного устройства – включение и выключение двигателя. Исследование дугогашения в контакторах переменного тока свидетельствует о том, что, чаще всего, пускатели используют для управления асинхронными трехфазными электродвигателями. Это объясняется простотой конструкции пускателей. Кроме того, при включении в схему, пускатели не только включают и выключают электродвигатель, но и осуществляют контроль его работы.

Так, магнитный пускатель выполняет следующие функции:

  • Обеспечивает пуск мотора и разгон двигателя;
  • Контролирует непрерывность работы в соответствии с заданным временным промежутком;
  • Защищает мотор от перегрузок;
  • Меняет направление вращения мотора;
  • Отвечает за торможение противотоком;
  • Обеспечивает отключение двигателя.

Вместе с тем, пускатель обеспечивает нулевую защиту электропривода. Так, при незапланированном отключении питания, замок зажигания (контроллер) двигателя может оказаться в ненулевом положении. Нулевая защита предотвращает самопроизвольное включение мотора при восстановлении питания: двигатель включается в работу только после команды оператора.

Для чего нужен магнитный пускатель: сфера применения

Помимо управления трехфазным асинхронным двигателем, магнитный пускатель может быть использован для контроля работы мощных потребителей электроэнергии (например, насоса, кондиционера). В быту магнитные пускатели, чаще всего, используют для включения нагревательной системы (например, ТЭНов).


Кроме того, пускатели используются в схемах:

  • Дистанционного управления осветительными приборами;
  • Контроля тепловых печей;
  • Управления компрессорами.

Так, сфера применения пускателей крайне широка. Это объясняется простотой их конструкции и легкостью включения устройств в схему. Кроме того, найти пускатель по доступной стоимости не составляет труда: особую популярность, сегодня, имеет скупка электрических б/у аппаратов.

Устройство магнитного пускателя (видео)

Практически ни одно современное электрооборудование не обходится без устройства включения и отключения электрической цепи – магнитного пускателя. Современный магнитный электропускатель представляет собой модифицированный двухпозиционный электромагнитный электрический контактор. Зная, как работает магнитный пускатель, и какие виды устройства выделяют, вы сможете включать контактор в любую схему. А предложенные выше рекомендации по монтажу дополнительных контактов помогут вам усовершенствовать устройство!

Пускатель электромагнитный применяется для коммутации мощных потребителей электроэнергии в основном на производстве. В этой статье пойдет речь о том, для чего нужен магнитный пускатель, каков принцип работы магнитного пускателя и устройство магнитного пускателя. Устройство и принцип пускателя, как для цепей 380В так и для 220В, одинаковы давно и хорошо отработаны конструкторами.

Как уже было сказано, это коммутационный аппарат, проще говоря, выключатель, таково его назначение. Контакты пускателей рассчитаны на большой ток, протекающий через нагревательные приборы и мощные электродвигатели. Эти силовые контакты приводятся в действие электромагнитным способом, поэтому управлять пускателями можно дистанционно при помощи сравнительно маломощных цепей. Поэтому маленькой кнопкой или концевым выключателем можно производить подключение мощных электродвигателей и другой нагрузки. Реверсивный пускатель обеспечивает включение асинхронных моторов в любую сторону – по часовой стрелке или против, по выбору оператора или системы управления.

Принцип работы

Принцип действия магнитного пускателя фактически совпадает с реле. Для работы пускателя от кнопок без фиксации используется самоблокировка от контактов, параллельных кнопке. Для отключения используется нормально замкнутая кнопка, включенная последовательно в цепь управления. При размыкании контактов пускатель отключается и готов к повторному включению сразу после замыкания контактов стоповой кнопки.

«Кнопочный» вариант управления пускателями является подавляющим для ручных операций. В цепях автоматики пускатели обычно удерживаются во включенном состоянии непрерывным сигналом, подаваемым с дискретного выхода контроллера на промежуточное реле.

Существуют различные виды пускателей, среди которых есть и реверсивные магнитные пускатели («головная боль» новичков-электромонтеров, пытающихся понять как работает непривычная цепь и не привыкших мыслить электрическими схемами). Фактически это два пускателя, работающие строго поочередно: если включается один, то другой должен быть обязательно отключен, иначе будет короткое замыкание между фазами.

Его принцип таков: если в одном включенном положении последовательность фаз A, B, C, то в другом положении должно быть, например, A, C, B, то есть, две фазы должны поменяться местами. Это позволяет изменять направление вращающегося поля в асинхронных моторах и запускать их в различном направлении либо по часовой стрелке, либо против.

Все виды магнитных пускателей объединяют такие элементы конструкции, как электромагнит переменного тока, система подвижных и неподвижных силовых и вспомогательных контактов. Несущей частью является корпус из термостойких и негорючих пластиков. Эти пластмассы должны быть механически прочными и не деформироваться при повышенной температуре. Любой пускатель, как правило, трехфазный.

  1. Контактные пружины, обеспечивающие плавность пуска
  2. Подвижные контакты (мостики)
  3. Неподвижные контакты (пластины)
  4. Пластмассовая траверса
  5. Якорь
  6. Катушка пускателя
  7. Ш-образная часть магнитопровода
  8. Дополнительные контакты

Классификация магнитных пускателей делается по нескольким признакам, среди которых обычно главной является величина пускателя. Под величиной подразумеваются не габариты или вес пускателя, а то, какой ток он может коммутировать и насколько он устойчив к дуге в цепях с индуктивностями (при отключении электродвигателя). Основой является нереверсивный магнитный пускатель, так как реверсивные собираются из последних. Работа магнитных пускателей протекает в разных условиях, поэтому их также классифицируют по степени защищенности: открытое, защищенное, пылебрызгонепроницаемое.

Работа магнитного пускателя очень часто требует наличия теплового реле. Все типы магнитных пускателей имеют конструктивно совместимые тепловые реле. Часто их выпускает один и тот же производитель. Особенно важными применениями тепловых реле является защита электродвигателей от перегрева. Тепловое реле состоит из двухфазных биметаллических проводников (проводников с разными коэффициентами теплового расширения) – по одному на каждую фазу.

С электрической точки зрения, они являются резисторами с очень малым сопротивлением, и, таким образом, служат датчиками тока. Когда через фазы (или одну из них) протекает слишком большой ток, биметаллическая пластина изгибается и размыкает магнитные контакты, то есть контакты в цепи катушки пускателя. Подключение тепловых реле выполняется между пускателем и нагрузкой.

Все больше распространяются модульные пускатели. Это пускатели, монтируемые на DIN-рейку. Это металлическая профильная полоса, закрепляемая в шкафах на щите. Простота и легкость монтажа – исключительные. Рядом с пускателем (контактором) можно прикрепить тепловые реле, автоматы, УЗО (устройство защитного отключения), микропроцессорные контроллеры и многое другое. Модульные устройства очень легко собираются в схемы, благодаря каналам для проводов, проложенным между DIN-рейками. Монтаж выполняется зачищенными проводами необходимого сечения, обжатыми наконечниками. Наконечники вставляют в отверстия клемм приборов согласно принципиальной схеме и зажимают винтами.

На верхнюю сторону пускателей наносится маркировка, необходимая при монтаже и ремонте. Там есть обозначение типа, схема контактов и в некоторых случаях производители оставляют место для наклейки или подписи потребительских данных.

Большие успехи в силовой электронике, достигнутые за последние десятилетия, привели к тому, что большинство основных производителей теперь предлагают потребителям бесконтактные пускатели, содержащие мощные полупроводниковые ключи. У них есть определенные преимущества. Они работают бесшумно, не искрят, имеют высокую частоту переключений.

Некоторые модели благодаря ШИМ-контроллерам позволяют плавно пускать электродвигатели, а для автоматизации предусмотрены даже сетевые интерфейсы. К недостаткам можно отнести высокую цену, высокую квалификацию ремонтного персонала и небезопасную гальваническую связь с сетью, что может угрожать электрикам-ремонтникам.

Заключение

Несмотря на внедрение электронных ключей: уже устаревающие тиристоры и симисторы, мощные полевые транзисторы, и перспективные IGBT-транзисторы, магнитные пускатели сохраняют свое значение. Именно они надежно разрывают цепи, без каких-либо опасных для персонала или оборудования остаточных токов и утечек. Фактически это тот самый бессмертный “рубильник” который с гарантией обесточивает электроустановку. качественные пускатели никогда не заклинивают и приобретать нужно именно такие.

Схема подключения магнитного пускателя (малогабаритного контактора «КМ») не представляет сложности для опытных электриков, но для новичков может вызвать немало трудностей. Поэтому это статья для них.

Цель статьи максимально просто и наглядно показать сам принцип действия (работы) магнитного пускателя (далее МП) и малогабаритного контактора (далее КМ). Поехали.

МП и КМ являются коммутационными аппаратами, которые осуществляют управление и распределение рабочих токов по подключенным к ним цепям.

МП и КМ в основном используются для подключения и отключения асинхронных электродвигателей, а также их реверсивного переключения используя дистанционное управление. Они применяются для дистанционного управления группами освещения, нагревательными цепями и другими нагрузками.

Компрессоры, насосы и кондиционеры, тепловые печи, ленточные конвейера, цепи освещения вот где и не только можно встретить МП и КМ в системах их управления.

Чем отличаются магнитный пускатель и малогабаритный контактор, по принципу действия - ничем. По сути, это электромагнитные реле.

Найденное различие у контактора – мощность - определяется габаритами, а у пускателя величинами, а предельная мощность МП бывает больше чем у контактора.

Наглядные схемы МП и КМ

Рис. 1

Условно МП (или КМ) можно разделить на две части.

В одной части силовые контакты, которые выполняют свою работу, а в другой части электромагнитная катушка, которая включает и отключает эти контакты.

  1. В первой части находятся силовые контакты (подвижные на диэлектрической траверсе и неподвижные на диэлектрическом корпусе), они то и осуществляют подключение силовых линий.

Траверса с силовыми контактами прикреплена к подвижному сердечнику (якорю).

В нормальном состояние эти контакты разомкнуты и по ним не протекает ток, нагрузка (в данном случае лампы) находится в состоянии покоя.

Удерживает их в таком состоянии возвратная пружина. Которая изображена змейкой во второй части (2 )

  1. Во второй части мы видим электромагнитную катушку, на которую не подается ее рабочее напряжение, вследствие чего, она находится в состоянии покоя.

При подаче напряжения на обмотку катушки в ее контуре создается электромагнитное поле, образуя ЭДС (электродвижущую силу), которая притягивает к себе подвижный сердечник (подвижная часть магнитопровода - якорь) с закреплёнными на нем силовыми контактами. Они, соответственно, замыкают подключенные через них цепи, включая нагрузку (рис. 2).

Рис. 2

Естественно, если прекратить подачу напряжения на катушку, то пропадет электромагнитное поле (ЭДС), якорь перестаёт удерживаться и под действием пружины (вместе с закрепленными к нему подвижными контактами) возвращается в исходное состояние, размыкая цепи силовых контактов (рис. 1).

Из этого видно, что пускатель (и контактор) управляются подачей и отключением напряжения на их электромагнитной катушке.

Схема МП

  • Силовые контакты МП

Принципиальная схема подключения МП

Схема привязки основных элементов принципиальной схемы с МП

Как видно из рисунка 5 со схемой в состав МП входят и дополнительные блок контакты, которые бывают нормально разомкнутыми и нормально замкнутыми они могут использоваться для управления подачи напряжения на катушку, а также для других действий. Например, включать (или выключать) схему сигнальной индикации, которая будет показывать режим работы МП в целом.

Схема подключения по факту с привязкой контактных групп к принципиальной схеме МП

  • Силовые контакты МП
  • Катушка, возвратная пружина, дополнительные контакты МП
  • Кнопочный пост (кнопки пуск и стоп)

Принципиальная схема подключения КМ

Схема привязки основных элементов принципиальной схемы с КМ

Схема подключения по факту с привязкой контактных групп к принципиальной схеме КМ

  • Кн «СТОП» – кнопка «Стоп»
  • Кн «ПУСК» – кнопка «Пуск»
  • Кн МП – силовые контакты МП
  • БК – блок контакт МП
  • КТР – контакт теплового реле
  • М – электродвигатель

Схемы подключения МП (или КМ) с катушкой на 220 В

  • Кн «СТОП» – кнопка «Стоп»
  • Кн «ПУСК» – кнопка «Пуск»
  • КМП – катушка МП (магнитного пускателя)
  • Кн МП – силовые контакты МП
  • БК – блок контакт МП
  • Тр – нагревательный элемент теплового реле
  • КТР – контакт теплового реле
  • М – электродвигатель

Обозначение элементов аналогично на сх. Выше

Обратите внимание, в схеме участвует тепловое реле, которое через свой дополнительный контакт (нормально замкнутый) дублирует функцию кнопки «Стоп» в кнопочном посте.

Принцип действия магнитного пускателя и малогабаритного контактора + Видео пояснение

Важно , на схемах для наглядности магнитный пускатель показан без дугогасящей крышки, без которой его эксплуатация – запрещена!

Иногда возникает вопрос, зачем вообще использовать МП или КМ, почему просто не использовать трехполюсной автомат?

  1. Автомат рассчитан до 10 тысяч отключений – включений, а у МП и КМ этот показатель измеряется миллионами
  2. При скачках напряжений МП (КМ) отключит линию, сыграв
  3. Автоматом невозможно управлять, дистанционно применяя небольшое напряжение
  4. Автомат не сможет выполнять дополнительные функции включения и отключения дополнительных цепей (например, сигнальных) из–за отсутствия у него дополнительных контактов

Одним словом автомат отлично справляется со своей основной функцией защиты от коротких замыканий и перенапряжений, а МП и ПМ со своей.

На этом все, думаю, что принцип действия МП и КМ понятен, более наглядное пояснение смотрите в видео.

Удачного и безопасного вам монтажа!

В дополнение к статье прилагаю техническую документацию контакторов серии КМИ

Контакторы серии КМИ

Нормативная и техническая документация

По своим конструктивным и техническим характеристикам контакторы серии КМИ соответствуют требованиям российских и международных стандартов ГОСТ Р 50030.4.1,2002, МЭК60947,4,1,2000 и имеют сертификат соответствия РОСС CN.ME86.B00144. Контакторам серии КМИ по Обще- российскому классификатору продукции присвоен код 342600.

Условия эксплуатации

Категории применения: АС,1, АС,3, АС,4. Температура окружающей среды
– при эксплуатации: от –25 до +50 °С (нижняя предельная температура –40 °С) ;
– при хранении: от –45 до +50 °С .
Высота над уровнем моря, не более: 3000 м .
Рабочее положение: вертикальное, с отклонением ±30° .
Вид климатического исполнения по ГОСТ 15150,96: УХЛ4 .
Степень защиты по ГОСТ 14254,96: IP20 .

Структура обозначения

При подборе контакторов КМИ обращайте внимание на структуру условного обозначения

Основные технические характеристики

Технические характеристики силовой цепи

Технические характеристики цепи управления

Присоединение силовой цепи

Присоединение цепи управления

Технические характеристики встроенных дополнительных контактов

Параметры Значения
Номинальное напряжение Uе, В перем. тока до 660
пост. тока
Номинальное напряжение изоляции Ui , В 660
Ток термической стойкости (t°≤40°) Ith , А 10
Минимальная включающая способность Umin , В 24
Imin , мА 10
Защита от сверхтоков - предохранитель gG, А 10
100
Сопротивление изоляции, не менее, МОм 10

Электрические схемы

Типовые электрические схемы

Контакторы серии КМИ могут применяться для создания типовых электрических схем.

Электрическая схема реверсирования

Данная схема собирается из двух контакторов и механизма блокировки МБ 09,32 или МБ 40,95 (в зависимости от типоисполнения), предназначенного для исключения одновременного включения контакторов.

Данный способ пуска предназначен для двигателей, номинальное напряжение которых соответствует соединению обмоток в «треугольник». Пуск «звезда - треугольник» может быть использован для двигателей, пускающихся без нагрузки, или с пониженным моментом нагрузки (не более 50% от номинального момента). При этом пусковой ток при соединении в «звезду» составит 1,8–2,6 А от номинального тока. Переключение со «звезды» на «треугольник» должно производиться после того, как двигатель выйдет на номинальную частоту вращения.

Особенности конструкции и монтажа

Присоединительные зажимы обеспечивают надежное фиксирование проводников:
– для габаритов 1 и 2 – с закаленными тарельчатыми шайбами;
– для габаритов 3 и 4 – с зажимной скобой, позволяющей подсоединить контакт большего сечения.

Существуют два способа монтажа контакторов:

  1. Быстрая установка на DIN,рейку:

КМИ от 9 до 32 А (габариты 1 и 2) – 35 мм;
КМИ от 40 до 95 А (габариты 3 и 4) – 35 и 75 мм.

  1. Монтаж при помощи винтов.

Для нужд промышленных предприятий и компаний производится достаточно большое количество оборудования и приборов, обеспечивающих бесперебойную и соответствующую стандартам работу. Одним из таких приборов является магнитный пускатель.

Целевое назначение

Пускатель электромагнитный являет собой электромеханическое устройство, используемое для распределения питающего напряжения и управления работой подключенных нагрузок, работа которого регулируется по цепи низкого напряжения. Перечень задач, для чего нужен магнитный пускатель, выглядит как:

  • Запуск электрического двигателя с последующим разгоном до номинальной скорости;
  • Поддержание беспрерывной работы двигателя;
  • Прекращение подачи питающего напряжения на двигатель;
  • Защитное отключение нагрузки от сети при перегрузках или нестандартных ситуациях.

Поскольку магнитные пускатели представляют собой конструктивно несложные приборы и по параметрам способны коммутировать достаточно мощные нагрузки с огромными токами, то они также находят применение при управлении работой плавильных печей, блоков по вентиляции и кондиционированию воздуха, жидкостными электронасосами, пневмонагнетателями и другими подобными потребителями.

Конструкция и технические параметры

Устройство магнитного пускателя:

  • Сердечник;
  • Катушка электромагнита;
  • Якорь;
  • Полимерный каркас;
  • Механические датчики работы;
  • Центральная и дополнительная группа контакторов.

Основные параметры, отображенные в технической документации:

  • Мера тока, проходящего по центральным клеммам, – величина токов, при которых устройство является работоспособным на длительном отрезке времени с заданными параметрами;
  • Максимальное значение тока, которым сможет оперировать прибор;
  • Напряжение связываемого контура – напряжение оперируемого контура, при котором изоляция между центральными клеммами сохраняет свои технические параметры;
  • Управляющее напряжение катушки электрического магнита – переменное либо постоянное питающее напряжение электромагнита;
  • Релейная и электромеханическая устойчивость к изнашиванию – показатель выражается в количестве циклов на смыкание и размыкание клемм. Релейная износоустойчивость определяется по соответствующему графику, отображенному в сопутствующей документации к прибору. Подставив значения питающего напряжения и силы тока оперируемой сети, возможно, определить параметр самостоятельно;
  • Граничное количество срабатываний за единицу времени;
  • Число добавочных клемм и метод их реализации;
  • Отрезок времени на подключение и отключение.

Кроме того, пускатель электромагнитный может дополняться:

  1. Защитным реле с целью предотвращения перегрева и электрических перегрузок конечного потребителя;
  2. Дополнительным набором клемм;
  3. Пусковым устройством для двигателя;
  4. Электропредохранителями.

Разновидности магнитных пускателей

Из общего ассортимента выделяются такие виды магнитных пускателей:

  1. Реверсионные – обеспечивающие вращение ротора двигателя в направлении, обратном начальному;
  2. Нереверсионные – поддерживающие вращение ротора двигателя в одном направлении;
  3. Ограждающего типа – предназначены для установки в области с небольшим объемом пыли;
  4. Пылезащитные – применяются для уличного размещения и могут подвергаться воздействию солнечных лучей, дождя и снега;
  5. Открытого типа – используются в помещениях с отсутствием пыли и посторонних предметов.

Принцип работы магнитного пускателя

Принцип действия магнитного пускателя заключается в следующем. При подаче управляющего сигнала на обмотку катушки электромагнита (6) она намагничивается и вместе с неподвижной Ш-образной частью сердечника (7) притягивает к себе якорь (5) на пластмассовой траверсе (4), которого контактные мостики (2) плавно замыкают контактные пластины (3), благодаря контактным пружинам (1), которые, в свою очередь, создают необходимое усилие нажатия. Дополнительные контакты (8) могут использоваться на усмотрение потребителя.

Группа клемм исполнена в виде трехполюсного электрического магнита переменного тока с блок-контактами из серебросодержащего металла, осуществляет коммутирование основных цепей, амплитуда тока которых варьируется от 3 Ампер до 200 Ампер. Исходя из того, что основные клеммы длительное время проводят рабочий ток нагрузки и производят большое количество циклов на подключение и отключение, материалом для основных контактов применяют металлокерамику. Для упрощения использования стационарные и движущиеся клеммы принято монтировать легкосъемными.

В связи с использованием в замыкателях дугогасильных элементов появилась возможность уменьшить расстояние между рабочими клеммами и, соответственно, ослабить мощность электромагнита, ужать габариты, вес электромагнитного пускателя в целом. Дугогасильное устройство используется с целью исключения появления искрения клемм в момент смыкания и размыкания контактов. При рабочих токах более 10 Ампер дугогасильный прибор реализовывается в виде дугогасильного колосника на каждый проем. Дугогасильные колосники реализованы на принципе компенсации электрической дуги поперечным магнитным полем в камерах с продольными отверстиями. Негативными последствиями искрения является обгорание, обугливание, чрезмерное нагревание контактов.

Для перемещения якоря с контактами применяются прямонаправленные системы электромагнитов с П,- и Ш,- образными наборными магнитопроводами. Поскольку при срабатывании магнитного пускателя через втягивающую катушку проходит переменный ток, по своей величине значительно превышающий ток втянутого состояния, то для таких пускателей производителем устанавливается граничное количество подключений-отключений в час.

В зависимости от пропускных токов магнитного пускателя, применяются контакты различной формы и с разной плоскостью соприкосновения контактов, как указано на картинке ниже.

Для управляющих цепей магнитного пускателя применяются точечные контакты (а), а именно:

  • Точка-плоскость (1);
  • Точка-сфера (2);
  • Сфера-плоскость (3);
  • Сфера-сфера (4);

Для силовых цепей электромагнитного пускателя используют продольные контакты (б), а именно:

  • Призма-плоскость (5);
  • Цилиндр-плоскость (6);
  • Цилиндр-цилиндр (7);
  • Плоскость-плоскость (8).

Дополнительный контактор мостикового типа используется для коммутации слаботочных цепей управления и приводится в действие той же втягивающей катушкой, что и основные контакты. Основу вспомогательных контактов составляет медь, покрытая тонким слоем серебра или биметалла. Выпускаемые магнитные пускатели в своем составе имеют от двух до четырех дополнительных контактов, которые также могут работать, как на замыкание, так и на размыкание.

В работе асинхронных двигателей неотъемлемой частью является наличие магнитного пускателя, основной задачей которого является защита устройства от перегрузок. При работе двигателя бывают случаи обрыва одной из фаз ввиду перегорания плавких предохранителей либо по другим причинам. Понятно, что такое явление приводит к резкому возрастанию тока на статорных обмотках, что приводит к перегреву и выходу из строя электрического двигателя. Для предотвращения таких поломок используются магнитные пускатели с тепловыми реле. Основная масса тепловых реле построена на основе биметаллических элементов. Принцип функционирования биметаллического элемента заложен в его конструкции, сущностью которой является жесткое скрепление, путем горячего проката или сваркой, двух металлических пластин с разными коэффициентами расширения. Поскольку при нагревании такого элемента металлическая пластина с одной стороны будет линейно расширяться быстрее, чем пластина с обратной стороны, то произойдет физический изгиб пластины. Соответственно, происходит преобразование тепловой энергии в механическую работу путем отключения нагрузки при перегреве.

Обратите внимание! Поскольку тепловой процесс является инерционным, то тепловые реле не могут быть средством защиты оборудования от токов короткого замыкания. Даже короткого времени для отключения нагрузки при коротком замыкании может быть достаточно, чтобы нагрузка перегорела или вышла из строя.

В качестве металлов с разными коэффициентами линейного расширения, используемыми в биметаллических элементах, используются хромоникелевая сталь и инвар.

Типы магнитных пускателей

К типовым магнитным пускателям относятся:

  1. Класс ПМЛ эксплуатируется с электрическими двигателями мощностью до 75кВт. Основной механизм может дополняться температурным реле и ограничителями перенапряжений;
  2. Серия ПМА применяется в паре с электрическими асинхронными двигателями, ротор которых короткозамкнут, и имеет мощность до 100 кВт с рабочим напряжением от 380В до 660В. Механизм дополняется температурным реле, ограничителем по напряжению и позитронной защитой;
  3. Функционирование асинхронных двигателей мощностью до 11кВт, с питающим напряжением до 660В, дополняют магнитные пускатели серии ПМЕ. Данная серия комплектуется клеммами класса АС-3, АС-4 и тепловыми реле;
  4. Аппаратура кораблей комплектуется электромагнитными пускателями класса ПММ. Для сфер деятельности с более жесткими условиями к безопасности созданы магнитные пускатели в водозащитном или каплезащитном корпусе;
  5. Назначение магнитного пускателя группы ПМ-12 заключается в подсоединении к сети, реверсировании и выключении асинхронных двигателей, имеющих короткозамкнутый ротор, мощностью до 125кВт и при питающем напряжении сети от 380В до 660В.

Понимая устройство и принцип функционирования магнитного пускателя, не составит особого труда подобрать конкретный прибор для выполнения определенной задачи. Эксплуатируя устройство, не стоит забывать об обслуживании и регулярном осмотре магнитного пускателя, при этом прибор прослужит долгое время с заданными характеристиками.

Видео