Фазировка электрического оборудования. Трехфазные электрические цепи - история, устройство, особенности расчета напряжения, тока и мощности Трехфазные цепи и их основные параметры

8.1.Основные понятия и определения

Электрическое оборудование трехфазного тока (синхронные компенсаторы, трансформаторы, линии электро-передачи) подлежит обязательной фазировке перед первым включением в сеть, а также после ремонта, при котором мог быть нарушен.порядок следования и чередования фаз.

В общем случае фазировка заключается в проверке совпадения по фазе напряжения каждой из трех фаз вклю-чаемой электроустановки с соответствующими фазами напряжения сети.

Фазировка включает в себя три существенно различные операции. Первая из них состоит в проверке и срав-нении порядка следования фаз включаемой электроустановки и сети. Вторая операция состоит в проверке совпадения по фазе одноименных напряжений, т. е. отсутствии между ними углового сдвига. Наконец, третья операция заключается в проверке одноименности (расцветки) фаз, соединение которых предполагается выполнить. Целью этой операции является проверка правильности соединения между собой всех элементов электроустановки, т. е. в конечном счете правильности подвода токопроводящих частей к включающему аппарату.

Фаза. Под трехфазной системой напряжений понимают совокупность трех симметричных напряжений, амплитуды которых равны по значению и сдвинуты (амплитуда синусоиды одного напряжения относительно предшествующей ей амплитуды синусоиды другого напряжения) на один и тот же фазный угол (рис. 8.1, а).

Таким образом, угол, характери-зующий определенную стадию перио-дически изменяющегося параметра (в данном случае напряжения) , называют фазным углом или просто фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся напряже-ний одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяется меж-ду одинаковыми фазами. Фазы обозна-чают прописными буквами А, В, С. Трехфазные системы изображают также вращающимися векторами (рис.8.1, б).

На практике под фазой, трехфазной системы понимают также отдельный участок трехфазной цепи, по ко-торому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой назы-вают обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи. Для распознавания фаз оборудования на кожухах аппаратов, шинах, опорах и конструкциях.наносят цветные метки в виде кружков, полос и т. д. Элементы оборудования, принадлежащие фазе А, окрашивают в желтый цвет, фазы В-в зеленый и фазы С-в красный. В соответствии с этим фазы часто называют желтой, зеленой и красной: ж, з, к.

Таким образом, в зависимости от рассматриваемого вопроса фаза - это либо угол, характеризующий состоя­ние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.

Порядок следования фаз. Трехфазные системы напряжений и тока могут отличаться друг от друга порядком следования фаз. Если фазы (например, сети) следуют друг за другом в порядке А, В, С - это так называемый прямой порядок следования фаз (см. § 7.3). Если фазы следуют друг за другом в порядке А, С, В - это обратный порядок следования фаз.

Порядок следования фаз проверяют индукционным фазоуказателем типа И-517 или аналогичным по устройству фазоуказателем типа ФУ-2. Фазоуказатель подключают к проверяемой системе напряжений. Зажимы прибора маркированы, т. е. обозначены буквами А, В, С. Если фазы сети совпадут с маркировкой прибора, диск фазоуказателя будет вращаться в направлении, указанном стрелкой на кожухе прибора. Такое вращение диска соответствует прямому порядку следования фаз сети. Вращение диска в обратном направлении указывает на обратный порядок следования фаз. Получение прямого порядка следования фаз из обратного производится переменой мест двух любых фаз электроустановки.

Иногда вместо термина "порядок следования фаз" говорят "порядок чередования фаз". Во избежание пута­ницы условимся применять термин "чередование фаз" только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз. Итак, под чередованием фаз следует понимать очередность, в которой фазы трехфазной цепи (обмотки и выводы электрических машин, провода линий и т. д.) расположены в пространстве, если обход их кажцый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветке проводов и сборных шин.

Совпадение фаз. При фазировке трехфазных цепей встречаются различные варианты чередования обозначений вводов на включающем аппарате и подачи на эти вводы напряжения разных фаз (рис. 8.2, а, б). Варианты, при которых не совпадает порядок следования фаз, или порядок чередования фаз электроустановки и сети, при включении выключателя приводят к КЗ.

В то же время возможен единственный вариант, когда совпадает то и другое. Короткое замыкание между соединяемыми частями (электроустановкой и сетью) здесь исключено.

Под совпадением фаз при фазировке как раз и понимают именно этот вариант, когда на вводы выключателя, попарно принадлежащие одной фазе, поданы одноименные напряжения, а обозначения (расцветка) вводов вы-ключателя согласованы с обозначением фаз напряжений (рис. 8.2, в).

Под трехфазной системой ЭДС (напряжений) понимают совокупность трех симметричных ДС, амплитуды, которых равны по значению и сдвинуты (амплитуда каждой ЭДС относительно предшествующей ей амплитуды другой ЭДС) на один и тот же фазный угол. На рис. 1,д приведена схема простейшего синхронного генератора трехфазного тока. Обмотки, в. которых наводятся переменные ЭДС, помещены в пазы статора, смещенные по окружности на 120°. Выводам обмоток присвоены обозначения "начал" АБСа "концов" X, Y, Z соответственно. По обмотке ротора проходит постоянный ток, создавая магнитное поле. При пересечении обмоток статора магнитным полем вращающегося ротора в них наводится симметричная система трех синусоидальных ЭДС одинаковой частоты и амплитуды, сдвинутых по фазе на 120° (рис. 1,6). За один оборот ротора, что соответствует периоду времени Т, в каждой из обмоток происходит полный цикл изменения ЭДС. Когда ось ротора/- / пересекает витки обмотки статора, в них наводится максимальная ЭДС. Но так как для трех обмоток статора это происходит в разные моменты времени, то и максимумы наведенных ЭДС не совпадают по фазе, т. е. их амплитуды Ед, Eg, Ее оказываются сдвинутыми одна относительно другой на 1/3 периода, или на 120°.
Фаза. Угол, характеризующий определенную стадию периодически изменяющегося параметра (в данном случае ЭДС), называют фазовым углом или простой фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся ЭДС одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяют между одинаковыми фазами, например между началами синусоид, как это показано на рис. 1,6, или между амплитудами. При сдвиге двух синусоид по фазе одна из них будет отставать от другой по времени. Чтобы определить, какая из синусоид отстает, находят их начала, т. е. нулевые значения ЭДС при переходе от отрицательных 6 значений к положительным.

Рис. 1. Получение трехфазной симметричной системы ЭДС: 1 - статор; 2 - обмотка статора; 3 - ротор; 4 - обмотка ротора

На рис. 1,6 начала обозначены буквами а, Ь, с. Из рисунка видно, что начало одной синусоиды (например, синусоиды, проходящей через точку Ь) расположено правее начала другой (синусоиды, проходящей через точку а). Это свидетельствует о том, что синусоида с началом в точке b отстает по времени от синусоиды с началом в точке а Еще более отстает синусоида, проходящая через точку с, так как ее начало сдвинуто на (2/3) Т или на 240° от начала координат (момента, когда / = 0). В равной мере можно говорить, что синусоида с началом в точке а опережает синусоиды с началом в точке b на (1/3) Tvi с началом в точке с - на (2/3) Т.
На практике под фазой трехфазной системы понимают также отдельный участок трехфазной цепи, по которому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой называют обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи.
Фазы обозначают прописными буквами А, В, С. Но навешивать надписи букв на оборудование станций и подстанций не всегда удобно. Поэтому при окраске оборудования (например, сборных и соединительных шин в закрытых РУ), которая применяется с целью защиты от коррозии, используют красители различного цвета. Краску наносят по всей длине шин.
Шины фазы А окрашивают в желтый цвет, фазы В - в зеленый и фазы С - в красный. Поэтому фазы часто называют Ж, 3, К. Для распознавания фаз оборудования на кожухах, арматуре изоляторов, конструкциях и опорах наносят соответствующие цветные метки в виде кружков или полос.
Таким образом, в зависимости от рассматриваемого вопроса фаза - это либо угол, характеризующий состояние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.
Порядок следования фаз. Порядок, в котором ЭДС в фазных обмотках генератора проходят через одни и те же значения (например, через положительные амплитудные значения), называют порядком следования фаз. Трехфазные системы ЭДС могут отличаться друг от друга порядком следования фаз. Если вращение ротора генератора происходит в направлении, изображенном на рис. 1,с, то фазы будут следовать в порядке А, В, С - это так называемый прямой порядок следования фаз. Если направление вращения ротора изменить на противоположное, то изменится и порядок следования фаз. Фазы будут проходить через максимальные значения в порядке А, С, В - это обратный порядок следования фаз.
Иногда вместо термина "порядок следования фаз" говорят "порядок чередования фаз". Во избежание путаницы условимся применять термин "Чередование фаз" только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз.

Итак, под чередованием фаз понимают очередность, в которой фазы трехфазной цепи (отдельные провода линии, обмотки и выводы электрической машины и т. д.) расположены в пространстве, если обход их каждый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветки проводов и сборных шин. В ряде случаев порядок чередования фаз строго регламентирован. Так, порядок чередования обозначений выводов синхронных машин принимается соответствующим порядку следования фаз для установленного направления вращения ротора. Правила устройства электроустановок (ПУЭ) предусматривают для закрытых РУ следующий порядок чередования окрашенных сборных шин при расположении их в вертикальной плоскости: верхняя шина - желтая, средняя - зеленая, нижняя - красная. При расположении шин в горизонтальной плоскости наиболее удаленная шина окрашивается в желтый цвет, а ближайшая к коридору обслуживания - в красный. Ответвления от сборных шин выполняются так, чтобы слева располагалась фаза Ж, 8 справа - фаза К, если смотреть на шины из коридора обслуживания (при трех коридорах в РУ - из центрального).
На открытых подстанциях чередование окраски сборных и обходных шин ориентируют по силовым трансформаторам. Ближайшая к ним фаза шин окрашивается в желтый цвет, средняя - в зеленый, отдаленная - в красный. Ответвления от сборных шин выполняют таким образом, чтобы слева располагалась шина фазы Ж, справа - фазы К, если смотреть со стороны шин на трансформатор.
Отступление от указанных выше требований порядка чередования окраски шин РУ ПУЭ допускают в виде исключения в тех отдельных случаях, когда соблюдение этих требований связано с усложнением монтажа или необходимостью установки специальных опор для транспозиции проводов BЛ.
Совпадение фаз. При фазировке трехфазных цепей могут быть различные варианты чередования обозначений (расцветки) вводов на включающем аппарате и подачи на эти вводы напряжения разных фаз. Для простоты дальнейших рассуждений допустим, что фазируемые напряжения двух систем шин электроустановки имеют одинаковые порядки следования фаз А, В, С и Ах, Bi, С|. При этом условии фазы одноименных напряжений могут совпасть, а порядок чередования обозначений вводов у выключателя может не совпасть (рис- 2, а) или, наоборот, при одном и том же порядке чередования обозначений вводов фазируемые напряжения могут оказаться сдвинутыми по фазе (рис. 2, б). Поворот одноименных векторов напряжений относительно друг друга может быть не только на угол 120°, как это показано на рис. 2,6, но на любой угол, кратный 30е, что Характерно для трансформаторов, имеющих разные группы соединения обмоток. В обоих приведенных случаях включение выключателя неизбежно приводит к КЗ.
В то же время возможен вариант, когда совпадает и то, и другое (рис. 2, в) - Короткое замыкание между соединяемыми частями установки здесь исключено.
Под совпадением фаз при фазировке как раз и понимают именно этот случай, когда на вводах выключателя, расположенных друг против друга и принадлежащих одной фазе, одноименные напряжения двух частей установки совпадают по фазе, а обозначения (расцветка) вводов выключателя согласованы с соответствующими фазами напряжения и имеют один и тот же порядок чередования.
Векторное изображение синусоидально изменяющихся ЭДС (напряжений, токов). Периодически изменяющиеся синусоидальные величины изображают в виде синусоид (рис. 1,6) и вращающимися векторами - направленными отрезками прямой линии (рис. 1,в).

Рис. 2. Варианты несовпадения (е. б) и совпадения (в) фаз двух частей электроустановки
Для векторов фазных ЭДС Ej4, Eg. Eq> изображенных на этом рисунке, условно приняты направления от начал обмоток к их концам. Связь между синусоидальной кривой и вращающимися векторами показана на рис. 3. Синусоида получается проектированием вращающегося вектора (равного в заданном масштабе амплитуде изменяющейся ЭДС) на вертикальную ось /-/, перемещаемую по оси абсцисс со скоростью, пропорциональной частоте вращения вектора. Сдвиг фаз между двумя векторами, начала которых совмещены в одной точке, определяется углом V (рис.4). Отставание вектора Eg от вектора Ед показано направлением стрелки угла (против направления вращения векторов).
Следует сказать, что понятие вращающегося вектора ЭДС (напряжения, тока и т.д.) в электротехнике несколько отличается от понятия вектора, скажем, силы или скорости в механике.


Рис. 3. Получение синусоидального графика при вращении вектора


Рис. 4. Изображение двух ЭДС синусоидами и векторами при различных углах сдвига

Если в механике векторы не могут быть определены полностью только по их значениям без указания направления их действия в пространстве, то в электротехнике вращающиеся векторы не определяют действительного направления изображаемых ими величин в пространстве. Однако совокупное расположение вращающихся с одной частотой векторов (например, ЭДС трех фаз) на диаграмме дает представление о происходящем в электрической цепи процессе во времени и позволяет сделать количественную оценку явлений путем проведения элементарных операций над векторами.

Основные Схемы соединений трехфазных цепей.

Обмотки электрических машин (генераторов, синхронных компенсаторов, двигателей) и трансформаторов соединяют в звезду или треугольник.
При соединении трех обмоток генератора в звезду концы их объединяют в одну точку (рис. 5, в), которую называют нулевой (или нейтральной). Электродвижущие силы между началами и нулевой точкой обмоток называют фазными ЭДС и обозначают Ед, Eg, Ее, или просто £ф. Электродвижущие силы между выводами фаз называют линейными tn. Они получаются как разность векторов соответствующих фазных ЭДС генератора, например Ед - Eg = Едд (рис. 5,в).


Рис. 5. Соединение обмоток генератора в звезду (о), векторная диаграмма ЭДС (б), вычитание векторов фазных ЭДС (в)


Рис. 6. Соединение обмоток генератора треугольником (д) и векторная диаграмма ЭДС (б)
Порядок индексов в обозначении линейных ЭДС не произволен - индексы ставятся в порядке
вычитания векторов: Ев-Ес= Евс\ Ес-Ёл = ЕСА- С учетом заданного направления вращения векторов такой расстановке индексов соответствует вычитание вектора ЭДС отстающей фазы из вектора ЭДС опережающей. В результате векторы линейных ЭДС всегда опережают уменьшаемые фазные векторы на 30°. Значения линейных ЭДС в \Д или в 1,73, раз больше фазных, в чем легко убедиться измерением векторов на диаграмме.
Соединение обмоток генератора треугольником показано на рис. 6,о. Точки А, В, С являются общими для каждой пары фазных обмоток. Если к зажимам генератора не подсоединена нагрузка, то в обмотках, образующих замкнутый контур, отсутствует ток, обусловленный синусоидальными ЭДС промышленной частоты, сдвинутыми относительно друг друга на (1/3) Т, так как в каждый момент времени геометрическая сумма ЭДС, действующих в контуре треугольника, равна нулю. Убедиться в этом можно, рассматривая векторную диаграмму рис."6, б и синусоиды мгновенных значений ЭДС трехфазного генератора (рис. 1, б).


Рис. 7. Изменение на 180° фазы наведенной ЭДС при перемене обозначений зажимов:
а - фазы ЭДС Ед и Еа совпадают; б - ЭДС Ед и Eg находятся в противофазе

Из рис. 6, а видно, что при соединении треугольником линейные провода отходят непосредственно от начала и конца обмотки каждой фазы, поэтому фазные ЭДС равны линейным и совпадают с ними по фазе. Заметим, что на станциях обмотки генераторов, как правило, соединяют в звезду. Соединение треугольником встречается крайне редко и только у турбогенераторов одного типа (ТВС-30).
Обмотки трансформаторов, так же как и генераторов, соединяют в звезду и треугольник (схема зигзага встречается редко). Схема звезды часто выполняется с выведенной нулевой точкой. Схемы соединений в звезду, в звезду с выведенной нулевой точкой и в треугольник в тексте обычно обозначают буквами У, Ун и Д соответственно. Обмотки высшего напряжения (ВН) трансформаторов соединяют в У или Д независимо от схемы соединения источников питания. Вторичные обмотки среднего (СН) и низшего (НН) напряжений также соединяют в У или Д.
В отличие от генераторов у мощных трансформаторов соединение треугольником по крайней мере одной из его обмоток является обычным }